Nathan I. Hammer
University of Mississippi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan I. Hammer.
Science | 2006
Ruthanne Hassey; Ellen Swain; Nathan I. Hammer; D. Venkataraman; Michael D. Barnes
Chirally sensitive measurement techniques have generally been restricted to bulk samples. Here, we report the observation of fluorescence-detected circular dichroism (FDCD) from single (bridgedtriarylamine) helicene molecules by using an excitation wavelength (457 nanometers) in the vicinity of an electronic transition that shows circular dichroism in bulk samples. The distributions of dissymmetry (g) parameters by analysis of signals from pure M- and P-type diastereomers are almost perfect mirror images of one another, each spanning a range of both positive and negative values. In addition, we observe a well-defined structure in the histogram of dissymmetry parameters suggestive of specific molecular orientations at the polymer interface. These single-molecule results highlight strong intrinsic circular dichroism responses that can be obscured by cancellation effects in ensemble measurements of a randomly oriented bulk sample.
Journal of Chemical Physics | 2005
Nathan I. Hammer; Joseph R. Roscioli; Joseph C. Bopp; Jeffrey M. Headrick; Mark A. Johnson
We report vibrational predissociation spectra of the (H2O)n- cluster ions in the OH stretching region to determine whether the spectral signature of the electron-binding motif identified in the smaller clusters [Hammer et al. Science 306, 675 (2004)] continues to be important in the intermediate size regime (n = 7-21). This signature consists of a redshifted doublet that dominates the OH stretching region, and has been traced primarily to the excitation of a single water molecule residing in a double H-bond acceptor (AA) binding site, oriented with both of its H atoms pointing toward the excess electron cloud. Strong absorption near the characteristic AA doublet is found to persist in the spectra of the larger clusters, but the pattern evolves into a broadened triplet around n = 11. A single free OH feature associated with dangling hydrogen atoms on the cluster surface is observed to emerge for n > or = 15, in sharp contrast to the multiplet pattern of unbonded OH stretches displayed by the H+(H2O)n clusters throughout the n = 2-29 range. We also explore the vibration-electronic coupling associated with normal-mode displacements of the AA molecule that most strongly interact with the excess electron. Specifically, electronic structure calculations on the hexamer anion indicate that displacement along the -OH2 symmetric stretching mode dramatically distorts the excess electron cloud, thus accounting for the anomalously large oscillator strength of the AA water stretching vibrations. We also discuss these vibronic interactions in the context of a possible relaxation mechanism for the excited electronic states involving the excess electron.
Journal of Chemical Physics | 2005
Eric G. Diken; Nathan I. Hammer; Mark A. Johnson; Richard Christie; Kenneth D. Jordan
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.
Journal of Chemical Physics | 2003
Nathan I. Hammer; Kadir Diri; Kenneth D. Jordan; C. Desfrançois; R. N. Compton
Dipole-bound anions of 27 molecules containing either a carbonyl, nitrile, or sulfoxide group were studied using Rydberg electron transfer (RET) reactions with rubidium atoms excited to ns 2S and nd 2D excited states. The electron affinity of each molecule was obtained from the Rydberg state, nmax*, that gave the largest negative ion yield using the empirical relationship electron affinity=23/nmax*2.8 eV as well as from fitting the charge exchange profile to a theoretical curve crossing model. Electron affinities for the low dipole moment molecules (carbonyls) were also deduced from measurements of the electric field required to detach the electron from the anion. Calculations of the electron affinities for some of the nitriles at the coupled-cluster level of theory were performed. The dependencies of the electron affinity upon dipole moment, polarizability, dispersion interaction, conformation, and geometry of the molecules were investigated. It was found that a higher dipole moment generally results in ...
Journal of Chemical Physics | 2004
Eric G. Diken; Nathan I. Hammer; Mark A. Johnson
We report the gas-phase preparation of negatively charged glycine as well as the Gly(H(2)O)(1,2) (-) complexes by entrainment of the neutral precursor into an ionized supersonic expansion tuned to optimize the (H(2)O)(n) (-)Ar(m) clusters. The photoelectron spectrum of Gly(-) displays the signature of a dipole-bound species, with sufficient vibrational fine structure to characterize the core neutral as a higher energy, non-zwitterionic isomer of the amino acid.
Journal of Physical Chemistry B | 2011
Katherine L. Munroe; David H. Magers; Nathan I. Hammer
The effects of hydration on vibrational normal modes of trimethylamine N-oxide (TMAO) are investigated by Raman spectroscopy and electronic structure computations. Microsolvated networks of water are observed to induce either red or blue shifts in the normal modes of TMAO with increasing water concentration and to also exhibit distinct spectral signatures. By taking advantage of the selective and gradual nature of the water-induced shifts and using comparisons to theoretical predictions, the assignments of TMAOs normal modes are re-examined and the structure of the hydrogen-bonded network in the vicinity of TMAO is elucidated. Agreement between experiment and theory suggests that the oxygen atom in TMAO accepts on average at least three hydrogen bonds from neighboring water molecules and that water molecules are likely not directly interacting with TMAOs methyl groups.
Journal of Chemical Physics | 2004
Nathan I. Hammer; Robert J. Hinde; R. N. Compton; Kadir Diri; Kenneth D. Jordan; Dunja Radisic; Sarah T. Stokes; Kit H. Bowen
Results of experimental and theoretical studies of dipole-bound negative ions of the highly polar molecules ethylene carbonate (EC, C3H4O3, mu=5.35 D) and vinylene carbonate (VC, C3H2O3, mu=4.55 D) are presented. These negative ions are prepared in Rydberg electron transfer (RET) reactions in which rubidium (Rb) atoms, excited to ns or nd Rydberg states, collide with EC or VC molecules to produce EC- or VC- ions. In both cases ions are produced only when the Rb atoms are excited to states described by a relatively narrow range of effective principal quantum numbers, n*; the greatest yields of EC- and VC- are obtained for n*(max)=9.0+/-0.5 and 11.6+/-0.5, respectively. Charge transfer from low-lying Rydberg states of Rb is characteristic of a large excess electron binding energy (Eb) of the neutral parent; employing the previously derived empirical relationship Eb=23/n*(max)(2.8) eV, the electron binding energies are estimated to be 49+/-8 meV for EC and 24+/-3 meV for VC. Electron photodetachment studies of EC- show that the excess electron is bound by 49+/-5 meV, in excellent agreement with the RET results, lending credibility to the empirical relationship between Eb and n*(max). Vertical electron affinities for EC and VC are computed employing aug-cc-pVDZ atom-centered basis sets supplemented with a (5s5p) set of diffuse Gaussian primitives to support the dipole-bound electron; at the CCSD(T) level of theory the computed electron affinities are 40.9 and 20.1 meV for EC and VC, respectively.
Journal of Physical Chemistry A | 2010
Austin A. Howard; Gregory S. Tschumper; Nathan I. Hammer
The effects of weak intermolecular interactions on 10 vibrational normal modes of pyrimidine are investigated by Raman spectroscopy and electronic structure computations. Hydrogen-bonded networks of water induce a shift to higher energy in certain normal modes of pyrimidine with increasing water concentration, while other modes are relatively unaffected. Pyrimidine molecules also exhibit weak C-H...N interactions and shifted normal modes upon crystallization. The selective nature of the shifting of normal modes to higher energy allows for definitive assignments of the nearly degenerate nu(8a) and nu(8b) modes with polarized Raman spectroscopy. Natural bond orbital (NBO) analyses indicate that when water molecules donate hydrogen bonds to the nitrogen atoms of pyrimidine, there is significant charge transfer from pyrimidine to water, much of which can be accounted for by substantial decreases in the populations of the nitrogen lone pair orbitals. Despite the overall decrease of electron density in pyrimidine upon complexation with water, there are concomitant changes in NBO populations that polarize the pi-electron system toward the proton acceptor N atoms, as well as contractions of the bonds associated with the N-C-N and C-C-C regions of the pyrimidine ring.
Journal of Organic Chemistry | 2016
Louis E. McNamara; Nalaka P. Liyanage; Adithya Peddapuram; J. Scott Murphy; Jared H. Delcamp; Nathan I. Hammer
A series of thienopyrazine-based donor–acceptor–donor (D–A–D) near-infrared (NIR) fluorescent compounds were synthesized through a rapid, palladium-catalyzed C–H activation route. The dyes were studied through computational analysis, electrochemical properties analysis, and characterization of their photophysical properties. Large Stokes shifts of approximately 175 nm were observed, which led to near-infrared emission. Computational evaluation shows that the origin of this large Stokes shift is a significant molecular reorganization particularly about the D–A bond. The series exhibits quantum yields of up to φ = >4%, with emission maxima ranging from 725 to 820 nm. The emission is strong in solution, in thin films, and also in isolation at the single-molecule level. Their stable emission at the single-molecule level makes these compounds good candidates for single-molecule photon sources in the near-infrared.
Materials | 2010
Matthew D. McDowell; Ashley E. Wright; Nathan I. Hammer
Semiconductor nanocrystals hybridized with functional ligands represent an important new class of composite nanomaterials. The development of these new nanoscale building blocks has intensified over the past few years and offer significant advantages in a wide array of applications. Functional ligands allow for incorporation of nanocrystals into areas where their unique photophysics can be exploited. Energy and charge transfer between the ligands and the nanocrystal also result in enhanced physical properties that can be tuned by the choice of ligand architecture. Here, progress in the development and applications involving this new class of composite materials will be discussed.