Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan J. Alves is active.

Publication


Featured researches published by Nathan J. Alves.


ACS Applied Materials & Interfaces | 2015

Bacterial Nanobioreactors–Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles

Nathan J. Alves; Kendrick B. Turner; Michael A. Daniele; Eunkeu Oh; Igor L. Medintz; Scott A. Walper

All bacteria shed outer membrane vesicles (OMVs) loaded with a diverse array of small molecules, proteins, and genetic cargo. In this study we sought to hijack the bacterial cell export pathway to simultaneously produce, package, and release an active enzyme, phosphotriesterase (PTE). To accomplish this goal the SpyCatcher/SpyTag (SC/ST) bioconjugation system was utilized to produce a PTE-SpyCatcher (PTE-SC) fusion protein and a SpyTagged transmembrane porin protein (OmpA-ST), known to be abundant in OMVs. Under a range of physiological conditions the SpyTag and SpyCatcher domains interact with one another and form a covalent isopeptide bond driving packaging of PTE into forming OMVs. The PTE-SC loaded OMVs are characterized for size distribution, number of vesicles produced, cell viability, packaged PTE enzyme kinetics, OMV loading efficiency, and enzyme stability following iterative cycles of freezing and thawing. The PTE-loaded OMVs exhibit native-like enzyme kinetics when assayed with paraoxon as a substrate. PTE is often toxic to expression cultures and has a tendency to lose activity with improper handling. The coexpression of OmpA-ST with PTE-SC, however, greatly improved the overall PTE production levels by mitigating toxicity through exporting of the PTE-SC and greatly enhanced packaged enzyme stability against iterative cycles of freezing and thawing.


Therapeutic Delivery | 2015

Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles

Nathan J. Alves; Kendrick B. Turner; Igor L. Medintz; Scott A. Walper

Nanoparticle-based therapeutics are poised to play a critical role in treating disease. These complex multifunctional drug delivery vehicles provide for the passive and active targeted delivery of numerous small molecule, peptide and protein-derived pharmaceuticals. This article will first discuss some of the current state of the art nanoparticle classes (dendrimers, lipid-based, polymeric and inorganic), highlighting benefits/drawbacks associated with their implementation. We will then discuss an emerging class of nanoparticle therapeutics, bacterial outer membrane vesicles, that can provide many of the nanoparticle benefits while simplifying assembly. Through molecular biology techniques; outer membrane vesicle hijacking potentially allows for stringent control over nanoparticle production allowing for targeted protein packaged nanoparticles to be fully synthesized by bacteria.


Scientific Reports | 2016

Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles

Nathan J. Alves; Kendrick B. Turner; Igor L. Medintz; Scott A. Walper

Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins, and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles), and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.


Expert Opinion on Drug Delivery | 2016

Improving the targeting of therapeutics with single-domain antibodies.

Kendrick B. Turner; Nathan J. Alves; Igor L. Medintz; Scott A. Walper

ABSTRACT Introduction: The targeted delivery of therapeutic agents greatly increases their effectiveness while simultaneously reducing negative side effects. In the past, targeting of therapeutics has been accomplished with nucleic acids, peptides/proteins, and conventional antibodies. A promising alternative to the conventional antibodies often used in therapeutic targeting are significantly smaller-sized antibody fragments known as single-domain antibodies (sdAbs). Areas Covered: Recent advances in the utility of sdAbs for targeting of therapeutic agents along with relevant examples from the literature are discussed. Their advantages when compared to other targeting strategies as well as their challenges and limitations is also covered. Expert Opinion: The development of sdAb-based targeted therapeutics will likely continue. The identification of novel protein modification techniques will provide more options for sdAb modification (conjugation, immobilization, functionalization), allowing a wider array of therapeutic agents to be successfully targeted and delivered using sdAbs. This will also spur the selection of sdAbs with specificity for other targets having relevance towards therapeutics.


Research in Microbiology | 2017

Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant

Nathan J. Alves; Kendrick B. Turner; Kyle A. DiVito; Michael A. Daniele; Scott A. Walper

To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function.


Journal of Visualized Experiments | 2016

Directed Protein Packaging within Outer Membrane Vesicles from Escherichia coli: Design, Production and Purification

Nathan J. Alves; Kendrick B. Turner; Scott A. Walper

An increasing interest in applying synthetic biology techniques to program outer membrane vesicles (OMV) are leading to some very interesting and unique applications for OMV where traditional nanoparticles are proving too difficult to synthesize. To date, all Gram-negative bacteria have been shown to produce OMV demonstrating packaging of a variety of cargo that includes small molecules, peptides, proteins and genetic material. Based on their diverse cargo, OMV are implicated in many biological processes ranging from cell-cell communication to gene transfer and delivery of virulence factors depending upon which bacteria are producing the OMV. Only recently have bacterial OMV become accessible for use across a wide range of applications through the development of techniques to control and direct packaging of recombinant proteins into OMV. This protocol describes a method for the production, purification, and use of enzyme packaged OMV providing for improved overall production of recombinant enzyme, increased vesiculation, and enhanced enzyme stability. Successful utilization of this protocol will result in the creation of a bacterial strain that simultaneously produces a recombinant protein and directs it for OMV encapsulation through creating a synthetic linkage between the recombinant protein and an outer membrane anchor protein. This protocol also details methods for isolating OMV from bacterial cultures as well as proper handling techniques and things to consider when adapting this protocol for use for other unique applications such as: pharmaceutical drug delivery, medical diagnostics, and environmental remediation.


Biochemical and Biophysical Research Communications | 2015

Comparative study on the inhibition of plasmin and delta-plasmin via benzamidine derivatives.

Nathan J. Alves; Jeffrey A. Kline

The potent fibrinolytic enzyme, plasmin has numerous clinical applications for recannulizing vessels obstructed by thrombus. Despite its diminutive size, 91 kDa, success in the recombinant expression of this serine protease has been limited. For this reason, a truncated non-glycosylated plasmin variant was developed capable of being expressed and purified from E. coli. This mutated plasmin, known as δ-plasmin, eliminates four of the five kringle domains present on native plasmin, retaining only kringle 1 fused directly to the unmodified catalytic domain of plasmin. This study demonstrates that δ-plasmin exhibits similar kinetic characteristics to full length plasmin despite its heavily mutated form; KM = 268.78 ± 19.12, 324.90 ± 8.43 μM and Kcat = 770.48 ± 41.73, 778.21 ± 1.51 1/min for plasmin and δ-plasmin, respectively. A comparative analysis was also carried out to investigate the inhibitory effects of a range of benzamidine based small molecule inhibitors: benzamidine, p-aminobenzamidine, 4-carboxybenzamidine, 4-aminomethyl benzamidine, and pentamidine. All of the small molecule inhibitors, with the exception of unmodified benzamidine, demonstrated comparable competitive inhibition constants (Ki) for both plasmin and δ-plasmin ranging from Ki < 4 μM for pentamidine to Ki > 1000 μM in the case of aminomethyl benzamidine. This result further supports that δ-plasmin retains much of the same functionality as native plasmin despite its greatly reduced size and complexity. This study serves the purpose of demonstrating the tunable inhibition of plasmin and δ-plasmin with potential applications for the improved clinical delivery of δ-plasmin to treat various thrombi.


ACS Applied Materials & Interfaces | 2018

Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase

Nathan J. Alves; Martin H. Moore; Brandy J. Johnson; Scott N. Dean; Kendrick B. Turner; Igor L. Medintz; Scott A. Walper

While technologies for the remediation of chemical contaminants continue to emerge, growing interest in green technologies has led researchers to explore natural catalytic mechanisms derived from microbial species. One such method, enzymatic degradation, offers an alternative to harsh chemical catalysts and resins. Recombinant enzymes, however, are often too labile or show limited activity when challenged with nonideal environmental conditions that may vary in salinity, pH, or other physical properties. Here, we demonstrate how phosphotriesterase encapsulated in a bacterial outer membrane vesicle can be used to degrade the organophosphate chemical warfare agent (CWA) simulant paraoxon in environmental water samples. We also carried out remediation assays on solid surfaces, including glass, painted metal, and fabric, that were selected as representative materials, which could potentially be contaminated with a CWA.


PLOS ONE | 2016

Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

William B. Stubblefield; Nathan J. Alves; Matthew T. Rondina; Jeffrey A. Kline

Background We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Methods Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Results Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. Conclusion The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.


Brain Research | 2018

Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment

Dmitry V. Zaretsky; Hannah Kline; Maria V. Zaretskaia; Mary Beth Brown; Pamela J. Durant; Nathan J. Alves; Daniel E. Rusyniak

Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.

Collaboration


Dive into the Nathan J. Alves's collaboration.

Top Co-Authors

Avatar

Kendrick B. Turner

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott A. Walper

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor L. Medintz

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Daniele

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandy J. Johnson

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge