Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel R. Campbell is active.

Publication


Featured researches published by Nathaniel R. Campbell.


Molecular Cancer Therapeutics | 2011

Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice

Dipankar Pramanik; Nathaniel R. Campbell; Collins Karikari; Raghu R. Chivukula; Oliver A. Kent; Joshua T. Mendell; Anirban Maitra

Mis-expression of microRNAs (miRNA) is widespread in human cancers, including in pancreatic cancer. Aberrations of miRNA include overexpression of oncogenic miRs (Onco-miRs) or downregulation of so-called tumor suppressor TSG-miRs. Restitution of TSG-miRs in cancer cells through systemic delivery is a promising avenue for pancreatic cancer therapy. We have synthesized a lipid-based nanoparticle for systemic delivery of miRNA expression vectors to cancer cells (nanovector). The plasmid DNA–complexed nanovector is approximately 100 nm in diameter and shows no apparent histopathologic or biochemical evidence of toxicity upon intravenous injection. Two miRNA candidates known to be downregulated in the majority of pancreatic cancers were selected for nanovector delivery: miR-34a, which is a component of the p53 transcriptional network and regulates cancer stem cell survival, and the miR-143/145 cluster, which together repress the expression of KRAS2 and its downstream effector Ras-responsive element binding protein-1 (RREB1). Systemic intravenous delivery with either miR-34a or miR-143/145 nanovectors inhibited the growth of MiaPaCa-2 subcutaneous xenografts (P < 0.01 for miR-34a; P < 0.05 for miR-143/145); the effects were even more pronounced in the orthotopic (intrapancreatic) setting (P < 0.0005 for either nanovector) when compared with vehicle or mock nanovector delivering an empty plasmid. Tumor growth inhibition was accompanied by increased apoptosis and decreased proliferation. The miRNA restitution was confirmed in treated xenografts by significant upregulation of the corresponding miRNA and significant decreases in specific miRNA targets (SIRT1, CD44 and aldehyde dehydrogenase for miR34a, and KRAS2 and RREB1 for miR-143/145). The nanovector is a platform with potential broad applicability in systemic miRNA delivery to cancer cells. Mol Cancer Ther; 10(8); 1470–80. ©2011 AACR.


Cancer Letters | 2013

Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer

Shinichi Yabuuchi; Shweta G. Pai; Nathaniel R. Campbell; Roeland F. De Wilde; Elizabeth De Oliveira; Preethi Korangath; Mirte M. Streppel; Zeshaan Rasheed; Manuel Hidalgo; Anirban Maitra; N. V. Rajeshkumar

Pancreatic ductal adenocarcinoma (PDA) remains a lethal human malignancy with historically limited success in treatment. The role of aberrant Notch signaling, which requires the constitutive activation of γ-secretase, in the initiation and progression of PDA is well defined and inhibitors of this pathway are currently in clinical trials. Here we investigated the in vivo therapeutic effect of PF-03084014, a selective γ-secretase inhibitor, alone and in combination with gemcitabine in pancreatic cancer xenografts. PF-03084014 treatment inhibited the cleavage of nuclear Notch 1 intracellular domain and Notch targets Hes-1 and Hey-1. Gemcitabine treatment showed good response but not capable of inducing tumor regressions and targeting the tumor-resident cancer stem cells (CD24(+)CD44(+) and ALDH(+) tumor cells). A combination of PF-03084014 and gemcitabine treatment resulted tumor regression in 3 of 4 subcutaneously implanted xenograft models. PF-03084014, and in combination with gemcitabine reduced putative cancer stem cells, indicating that PF-03084014 target the especially dangerous and resilient cancer stem cells within pancreatic tumors. Tumor re-growth curves plotted after drug treatments demonstrated that the effect of the combination therapy was sustainable than that of gemcitabine. Notably, in a highly aggressive orthotopic model, PF-03084014 and gemcitabine combination was effective in inducing apoptosis, inhibition of tumor cell proliferation and angiogenesis, resulting in the attenuation of primary tumor growth as well as controlling metastatic dissemination, compared to gemcitabine treatment. In summary, our preclinical data suggest that PF-03084014 has greater anti-tumor activity in combination with gemcitabine in PDA and provides rationale for further investigation of this combination in PDA.


Cell Cycle | 2012

Coordinated effects of microRNA-494 induce G2/M arrest in human cholangiocarcinoma

Sumitaka Yamanaka; Nathaniel R. Campbell; Fangmei An; Scot C. Kuo; James J. Potter; Esteban Mezey; Anirban Maitra; Florin M. Selaru

MicroRNA (miRs) have emerged as salient regulators in cancer homeostasis and, recently, as putative therapeutics. Cholangiocarcinomas (CCA) are aggressive cancers with survival usually measured in months. mRNA arrays followed by pathway analysis revealed that miR-494 is a major modulator of the cell cycle progression from gap 2 (G₂) to mitosis (M). We performed fluorescence activated cell sorting (FACS) as well as differential interference contrast (DIC) microscopy, and confirmed that miR-494 induces a significant arrest in G₂/M in CCA cells. Furthermore, we verified that miR-494 modulates the protein level of six genes involved in the G₂/M transition: Polo-like Kinase 1 (PLK1), pituitary tumor-transforming gene 1 (PTTG1), Cyclin B1 (CCNB1), cell-division cycle 2 (CDC2), cell-division cycle 20 (CDC20) and topoisomerase II α (TOP2A). Next, we identified direct binding of miR-494 to the open reading frame (ORF) and downregulation of PTTG1 and TOP2A. In summary, our findings suggest that miR-494 has a global regulatory role in cell cycle progression, exerted by concerted effects on multiple proteins involved in gap 1 (G₁) to synthesis (S), as described previously, as well as G₂ to M progression. Therefore, it appears that the simultaneous effects of a single miR species on multiple targets along the same canonical pathway is advantageous for the usage of miRs as therapeutics. In addition, our data suggest that miRs act within a narrow range. miR expression above the upper threshold does not appear to induce further effects, which is reassuring in terms of off-target effects of miR surrounding noncancerous tissue.


PLOS ONE | 2014

miR-181c Regulates the Mitochondrial Genome, Bioenergetics, and Propensity for Heart Failure In Vivo

Samarjit Das; Djahida Bedja; Nathaniel R. Campbell; Brittany Dunkerly; Venugopal Chenna; Anirban Maitra; Charles Steenbergen

MicroRNAs (miRNAs) are small non-coding RNAs, which inhibit the stability and/or translation of a mRNA. miRNAs have been found to play a powerful role in various cardiovascular diseases. Recently, we have demonstrated that a microRNA (miR-181c) can be encoded in the nucleus, processed to the mature form in the cytosol, translocated into the mitochondria, and ultimately can regulate mitochondrial gene expression. However the in vivo impact of miR-181c is unknown. Here we report an in-vivo method for administration of miR-181c in rats, which leads to reduced exercise capacity and signs of heart failure, by targeting the 3′-end of mt-COX1 (cytochrome c oxidase subunit 1). We cloned miR-181c and packaged it in lipid-based nanoparticles for systemic delivery. The plasmid DNA complexed nanovector shows no apparent toxicity. We find that the mRNA levels of mitochondrial complex IV genes in the heart, but not any other mitochondrial genes, are significantly altered with miR-181c overexpression, suggesting selective mitochondrial complex IV remodeling due to miR-181c targeting mt-COX1. Isolated heart mitochondrial studies showed significantly altered O2-consumption, ROS production, matrix calcium, and mitochondrial membrane potential in miR-181c-treated animals. For the first time, this study shows that miRNA delivered to the heart in-vivo can lead to cardiac dysfunction by regulating mitochondrial genes.


Clinical Cancer Research | 2013

microRNA 223 Is Upregulated in the Multistep Progression of Barrett's Esophagus and Modulates Sensitivity to Chemotherapy by Targeting PARP1

Mirte M. Streppel; Shweta G. Pai; Nathaniel R. Campbell; Chaoxin Hu; Shinichi Yabuuchi; Marcia I. Canto; Jean S. Wang; Elizabeth A. Montgomery; Anirban Maitra

Purpose: Recent microarray and RNA-sequencing studies have uncovered aberrantly expressed microRNAs (miRNA) in Barretts esophagus–associated esophageal adenocarcinoma. The functional significance of these miRNAs in esophageal adenocarcinoma initiation and progression is largely unknown. Experimental Design: Expression levels of miR-199a/b-3p, -199a-5p, -199b-5p, -200b, -200c, -223, and -375 were determined in microdissected tissues from cardiac mucosa, Barretts esophagus, dysplastic Barretts esophagus, and esophageal adenocarcinoma using quantitative real-time PCR. miR-223 expression was validated in precursors and esophageal adenocarcinomas from 95 patients with esophageal adenocarcinoma by in situ hybridization (ISH). miR-223 was transfected into two esophageal adenocarcinoma cell lines, and in vitro assays were conducted. Target genes were identified using Illumina microarray, and results were validated in cell lines and human specimens. Results: miR-199 family members and miR-223 were significantly overexpressed in esophageal adenocarcinoma, however, only miR-223 showed a stepwise increase during esophageal adenocarcinoma carcinogenesis. A similar trend was observed by ISH, which additionally showed that miR-223 is exclusively expressed by the epithelial compartment. miR-223–overexpressing cells had statistically significantly more migratory and invasive potential than scramble sequence–transfected cells. PARP1 was identified as a direct target gene of miR-223 in esophageal adenocarcinoma cells. Increased sensitivity to chemotherapy was observed in cells with enforced miR-223 expression and reduced PARP1. Conclusions: miR-223 is significantly upregulated during the Barretts esophagus–dysplasia–esophageal adenocarcinoma sequence. Although high miR-223 levels might contribute to an aggressive phenotype, our results also suggest that patients with esophageal adenocarcinoma with high miR-223 levels might benefit from treatment with DNA-damaging agents. Clin Cancer Res; 19(15); 4067–78. ©2013 AACR.


Molecular Cancer Therapeutics | 2012

The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models

Masamichi Mizuma; Zeshaan Rasheed; Shinichi Yabuuchi; Noriyuki Omura; Nathaniel R. Campbell; Roeland F. De Wilde; Elizabeth De Oliveira; Qing Zhang; Oscar Puig; William Matsui; Manuel Hidalgo; Anirban Maitra; N. V. Rajeshkumar

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with most patients facing an adverse clinical outcome. Aberrant Notch pathway activation has been implicated in the initiation and progression of PDAC, specifically the aggressive phenotype of the disease. We used a panel of human PDAC cell lines as well as patient-derived PDAC xenografts to determine whether pharmacologic targeting of Notch pathway could inhibit PDAC growth and potentiate gemcitabine sensitivity. MRK-003, a potent and selective γ-secretase inhibitor, treatment resulted in the downregulation of nuclear Notch1 intracellular domain, inhibition of anchorage-independent growth, and reduction of tumor-initiating cells capable of extensive self-renewal. Pretreatment of PDAC cells with MRK-003 in cell culture significantly inhibited the subsequent engraftment in immunocompromised mice. MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) PDAC xenografts. A combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared with gemcitabine in 4 of 9 (44%) PDAC xenografts, reduced tumor cell proliferation, and induced both apoptosis and intratumoral necrosis. Gene expression analysis of untreated tumors indicated that upregulation of NF-κB pathway components was predictive of sensitivity to MRK-003, whereas upregulation in B-cell receptor signaling and nuclear factor erythroid-derived 2-like 2 pathway correlated with response to the combination of MRK-003 with gemcitabine. Our findings strengthen the rationale for small-molecule inhibition of Notch signaling as a therapeutic strategy in PDAC. Mol Cancer Ther; 11(9); 1999–2009. ©2012 AACR.


Molecular Cancer Therapeutics | 2012

A Polymeric Nanoparticle Encapsulated Small Molecule Inhibitor of Hedgehog Signaling (NanoHHI) Bypasses Secondary Mutational Resistance to Smoothened Antagonists

Venugopal Chenna; Chaoxin Hu; Dipankar Pramanik; Blake T. Aftab; Collins Karikari; Nathaniel R. Campbell; Seung-Mo Hong; Ming Zhao; Michelle A. Rudek; Saeed Khan; Charles M. Rudin; Anirban Maitra

Aberrant activation of the hedgehog (Hh) signaling pathway is one of the most prevalent abnormalities in human cancer. Tumors with cell autonomous Hh activation (e.g., medulloblastomas) can acquire secondary mutations at the Smoothened (Smo) antagonist binding pocket, which render them refractory to conventional Hh inhibitors. A class of Hh pathway inhibitors (HPI) has been identified that block signaling downstream of Smo; one of these compounds, HPI-1, is a potent antagonist of the Hh transcription factor Gli1 and functions independent of upstream components in the pathway. Systemic administration of HPI-1 is challenging due to its minimal aqueous solubility and poor bioavailability. We engineered a polymeric nanoparticle from [poly(lactic-co-glycolic acid); (PLGA)] conjugated with polyethylene glycol (PEG), encapsulating HPI-1 (NanoHHI). NanoHHI particles have an average diameter of approximately 60 nm, forms uniform aqueous suspension, and improved systemic bioavailability compared with the parent compound. In contrast to the prototype targeted Smo antagonist, HhAntag (Genentech), NanoHHI markedly inhibits the growth of allografts derived from Ptch−/+; Trp53−/− mouse medulloblastomas that harbor a SmoD477G binding site mutation (P < 0.001), which is accompanied by significant downregulation of mGli1 as well as bona fide Hh target genes (Akna, Cltb, and Olig2). Notably, NanoHHI combined with gemcitabine also significantly impedes the growth of orthotopic Pa03C pancreatic cancer xenografts that have a ligand-dependent, paracrine mechanism of Hh activation when compared with gemcitabine alone. No demonstrable hematologic or biochemical abnormalities were observed with NanoHHI administration. NanoHHI should be amenable to clinical translation in settings where tumors acquire mutational resistance to current Smo antagonists. Mol Cancer Ther; 11(1); 165–73. ©2011 AACR.


Human Pathology | 2012

Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon

Mirte M. Streppel; Audrey Vincent; Radha Mukherjee; Nathaniel R. Campbell; Shih Hsun Chen; Konstantinos Konstantopoulos; Michael Goggins; Isabelle Van Seuningen; Anirban Maitra; Elizabeth A. Montgomery

Mucin 16 (cancer antigen 125) is a cell surface glycoprotein that plays a role in promoting cancer cell growth in ovarian cancer. The aims of this study were to examine mucin 16 expression in a large number of digestive tract adenocarcinomas and precursors and to determine whether mucin 16 up-regulation is correlated with patient outcome. Tissue microarrays were constructed using surgical resection tissues and included pancreatic (115 normal, 29 precursors, 200 pancreatic ductal adenocarcinomas), esophageal (86 normal, 104 precursors, 95 esophageal adenocarcinomas, 35 lymph node metastases), gastric (211 normal, 8 precursors, 119 gastric adenocarcinomas, 62 lymph node metastases), and colorectal (34 normal, 17 precursors, 39 colorectal adenocarcinomas) tissues. Mucin 16 was detected in 81.5%, 69.9%, 41.2%, and 64.1% of the pancreatic ductal adenocarcinomas, esophageal adenocarcinomas, gastric adenocarcinomas, and colorectal adenocarcinomas, respectively. Mucin 16 was seen in a subset of the precursors. On multivariate analysis, moderate/diffuse mucin 16 in pancreatic ductal adenocarcinomas was strongly associated with poor survival (P < .001), independent of other prognosis predictors. A similar trend was observed for esophageal adenocarcinomas (P = .160) and gastric adenocarcinomas (P = .080). Focal mucin 16 in colorectal adenocarcinomas was significantly correlated (P = .044) with a better patient outcome, when compared with mucin 16-negative cases. Using Western blot analysis, we found mucin 16 expression in 3 of 6 pancreatic ductal adenocarcinoma and 1 of 2 esophageal adenocarcinoma cell lines. We conclude that most of the digestive tract adenocarcinomas and a subset of their precursors express mucin 16. Mucin 16 expression is an independent predictor of poor outcome in pancreatic ductal adenocarcinomas and potentially in esophageal adenocarcinomas and gastric adenocarcinomas. We propose that mucin 16 may function as a prognostic marker and therapeutic target in the future.


Nucleic Acids Research | 2013

Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer

Sanchari Bhattacharyya; Yiting Yu; Masako Suzuki; Nathaniel R. Campbell; Jozef Mazdo; Aparna Vasanthakumar; Tushar D. Bhagat; Sangeeta Nischal; Maximilian Christopeit; Samir Parekh; Ulrich Steidl; Lucy A. Godley; Anirban Maitra; John M. Greally; Amit Verma

5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome-wide assays for 5-hmC determination are needed as many of the techniques for 5-methylcytosine (5-mC) determination, including methyl-sensitive restriction digestion and bisulfite sequencing cannot distinguish between 5-mC and 5-hmC. Glycosylation of 5-hmC residues by beta-glucosyl transferase (β-GT) can make CCGG residues insensitive to digestion by MspI. Restriction digestion by HpaII, MspI or MspI after β-GT conversion, followed by adapter ligation, massive parallel sequencing and custom bioinformatic analysis allowed us determine distribution of 5-mC and 5-hmC at single base pair resolution at MspI restriction sites. The resulting HpaII tiny fragment Enrichment by Ligation-mediated PCR with β-GT (HELP-GT) assay identified 5-hmC loci that were validated at global level by liquid chromatography-mass spectrometry (LC-MS) and the locus-specific level by quantitative reverse transcriptase polymerase chain reaction of 5-hmC pull-down DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. The HELP-GT assay allowed global determination of 5-hmC and 5-mC from low amounts of DNA and with the use of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of determination of this modification in conjugation with conventional methylome analysis.


Clinical Cancer Research | 2012

Molecular Determinants of Retinoic Acid Sensitivity in Pancreatic Cancer

Sonal Gupta; Dipankar Pramanik; Radha Mukherjee; Nathaniel R. Campbell; Sathyanarayanan Elumalai; Roeland F. De Wilde; Seung-Mo Hong; Michael Goggins; Ana De Jesus-Acosta; Daniel A. Laheru; Anirban Maitra

Purpose: To identify a predictive molecular “signature” for sensitivity to retinoic acid in pancreatic cancer. Experimental Design: Fourteen patient-derived, low-passage pancreatic ductal adenocarcinoma (PDAC) lines with varied expression of fatty acid–binding protein 5 (FABP5) and cellular retinoic acid–binding protein 2 (CRABP2) were used to evaluate the response to all-trans retinoic acid (ATRA). Cell proliferation, apoptosis, and migration/invasion assays were used to measure the in vitro response. Tumor growth was monitored in subcutaneous xenografts in athymic nude mice for 4 weeks. Results: Response to ATRA was observed to be dependent upon differential expression of FABP5 versus CRABP2. Thus, elevated FABP5 expression was associated with minimal cytotoxicity and tumor growth inhibition and a paradoxical increase in migration and invasion. Conversely, CRABP2 expression in the absence of FABP5 was associated with significant tumor growth inhibition with ATRA, even in gemcitabine-resistant tumors. The ATRA-resistant phenotype of FABP5highCRABP2null cells could be circumvented by ectopic expression of CRABP2. Alternatively, reexpression of endogenous CRABP2 could be enabled in FABP5highCRABP2null PDAC lines by exposure to decitabine and trichostatin A, thereby relieving epigenetic silencing of the CRABP2 gene promoter. Immunohistochemical staining for FABP5 in archival human tissue microarrays identifies a subset of cases (13 of 63, ∼20%) which are negative for FABP5 expression and might be candidates for ATRA therapy. Conclusions: The widely used agent ATRA deserves a “second look” in PDAC, but needs to be targeted to patient subsets with biopsy-proven FABP5-negative tumors, or be combined with a chromatin-modifying agent to reexpress endogenous CRABP2. Clin Cancer Res; 18(1); 280–9. ©2011 AACR.

Collaboration


Dive into the Nathaniel R. Campbell's collaboration.

Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaoxin Hu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shweta G. Pai

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge