Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nawab Ali is active.

Publication


Featured researches published by Nawab Ali.


Journal of Applied Toxicology | 2010

Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines.

Meena Mahmood; Daniel A. Casciano; Teodora Mocan; Cornel Iancu; Yang Xu; Lucian Mocan; Dana Iancu; Enkeleda Dervishi; Zhongrui Li; Mustafa Z. Abdalmuhsen; Alexandru R. Biris; Nawab Ali; Paul C. Howard; Alexandru S. Biris

Functional nanomaterials that included gold, silver nanoparticles and single wall carbon nanotubes were delivered to two cell lines (MLO‐Y4 osteocytic cells and HeLa cervical cancer cells) in various concentrations. The cells were found to uptake the nanomaterials in a relatively short time, a process that significantly affected the shape and the size of the cells. The percentage of cellular death, due to the delivery of these nanomaterials, was found to be the highest for carbon nanotubes and increased gradually with the concentration of these nanostructures. Moreover, when the nanomaterials were delivered to the cells combined with commonly used chemotherapeutic agents such as etoposide or dexamethasone, the number of the cells that died increased significantly (100–300%) as compared with the case when only the nanomaterials or the chemotherapeutic agents were delivered. The experimental results were confirmed by Caspase 3 studies, indicating a strong interaction between the nanomaterials used in this study and the protein structure of the cells, which allowed a more effective action of the apoptotic agents. These findings could be the foundation of a new class of cancer therapies that are composed of both chemotherapeutic agents and nanomaterials. Copyright


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug

Meena Mahmood; Alokita Karmakar; Ashley Fejleh; Teodora Mocan; Cornel Iancu; Lucian Mocan; Dana Iancu; Yang Xu; Enkeleda Dervishi; Zhongrui Li; Alexandru R. Biris; Rakhee Agarwal; Nawab Ali; Ekaterina I. Galanzha; Alexandru S. Biris; Vladimir P. Zharov

AIM In previous pharmacological applications, single-wall carbon nanotubes (CNTs) have primarily been explored as potential drug carriers and delivery vehicles. Here, we investigate and demonstrate for the first time, that CNTs can be considered as anti-tumor agents and, when in combination with conventional drugs, can significantly enhance their chemotherapeutic effects. METHOD & MATERIALS HeLa and human Panc1 cancer cells were treated with CNTs (24 h, 10 and 20 microg/ml), etoposide (6 h, 75 x 10(-6) M) and their combination. The cell viability was controlled by flow cytometry, caspase-3 assay and trypan blue dye. RESULTS A highly increased anti-tumor activity of the combination of etoposide and CNTs against cancer cells, compared with the administration of etoposide and CNTs alone, is reported. Data provided by viability assays suggest a strong interaction between CNTs and the cellular structures, thereby improving the effectiveness of conventional chemotherapeutic agents. CONCLUSION We believe this finding could lead to the development of new cancer therapies by carefully selecting the cytostatic drugs and nanostructural materials that, in combination, may provide synergistic curative rates.


Regulatory Peptides | 2003

Molecular cloning and functional characterization of a vasotocin receptor subtype expressed in the pituitary gland of the domestic chicken (Gallus domesticus): avian homolog of the mammalian V1b-vasopressin receptor.

Lawrence E. Cornett; John D. Kirby; J.A. Vizcarra; Jeff C Ellison; Jarrod Thrash; Philip R. Mayeux; Mark D. Crew; Stacie M. Jones; Nawab Ali; Dennis A. Baeyens

The neurohypophysial hormone arginine vasotocin (AVT) stimulates adrenocorticotropin hormone (ACTH) secretion from the avian anterior pituitary gland resulting in increased adrenal secretion of corticosterone in response to stress. Here, we report molecular cloning and functional characterization of a gene encoding an AVT receptor subtype, designated the VT2 receptor, that may mediate the stimulatory effect of AVT on ACTH secretion in birds. The open reading frame predicts a 425 amino acid polypeptide that includes seven segments of 19 to 24 hydrophobic amino acids, typical of guanine nucleotide-protein coupled receptors. Phylogenetic analysis revealed that the VT2 receptor shares highest identity with the mammalian V1b-vasopressin receptor subtype. Expressed VT2 receptors in COS7 cells mediate AVT-induced phosphatidylinositol turnover and Ca(2+) mobilization. In the domestic chicken, expression of VT2 receptor gene transcripts is limited to the pituitary gland. Based on similarities in sequence, site of expression and coupled signal transduction pathways, we conclude that the VT2 receptor is the avian homolog of the mammalian V1b-vasopressin receptor, and therefore may play an important role in the avian stress response.


Journal of Biomaterials Science-polymer Edition | 2005

Plasma treatment of polyurethane coating for improving endothelial cell growth and adhesion

S. De; R. Sharma; S. Trigwell; B. Laska; Nawab Ali; Malay K. Mazumder; Jawahar L. Mehta

The advantage of helium plasma treatment in enhancing endothelial cell growth and adhesion on polyurethane film coated on glass substrate is demonstrated with experimental data. Human coronary artery endothelial cell (HCAE) growth and attachment was studied on (1) bare glass substrate, used as control, (2) coated glass, with and without helium plasma treatment and (3) collagen-treated polyurethane-coated glass substrates. The untreated polyurethane film surface was rough (RMS = 690 nm) and highly hydrophobic (contact angle = 90°). Cell growth on the untreated polyurethane surface was poor (cell concentration ≈ 3750/cm2) compared to glass surface (cell concentration ≈ 17 665/cm2). The atmospheric helium plasma treatment of the polyurethane film resulted in oxidation of the surface, a slight increase in roughness (RMS = 735 nm) and a significant drop in hydrophobicity (contact angle = 79°). The critical surface tension (γ C) of polyurethane film was also increased by 2 dynes/cm due to helium plasma treatment. These changes resulted in enhanced HCAE cell growth in polyurethane film (cell concentration ≈ 16 230/cm2) compared to the untreated polyurethane film. The cell growth was also comparable to cell growth on a glass surface (17 665/cm2) and the collagen-treated polyurethane film surfaces (cell concentration ≈ 21 645/cm2), respectively. Moreover, the strength of cell attachment on a plasma-treated surface (cell retention R = 89%) under laminar flow was significantly higher than that on a glass surface (R = 71%). While the collagen-treated polyurethane surface had the highest number of HCAE cells, the cell adhesion was found to be poor (R = 42%) compared to that of a plasma-treated surface. Thus, the overall performance of the plasma-treated polyurethane film surface on endothelial cell growth was better than other substrates studied here.


Journal of Biomaterials Science-polymer Edition | 2003

Corrosion resistance of polyurethane-coated nitinol cardiovascular stents.

Mazumder Mm; S. De; S. Trigwell; Nawab Ali; Malay K. Mazumder; Jawahar L. Mehta

Corrosion of metal stents implanted inside an artery can have two adverse effects: (1) tissue reaction and possible toxic effects from the metal ions leaching out of the stent, and (2) loss of mechanical strength of the stent caused by corrosion. The corrosion resistance of Nitinol (Nickel-Titanium) stents and its modulation with different film thickness of polymer coating was studied against an artificial physiological solution using a Potentiostat/Galvanostat and an electrochemical corrosion cell. The corrosion rate decreased rapidly from 275 μm/year for an uncoated surface down to less than 13 μm/year for a 30 μm thick polyurethane coating. Stainless steel (316L) and Nitinol both contain potentially toxic elements, and both are subject to stress corrosion. Minimization of corrosion can significantly reduce both tissue reaction and structural degradation.


Journal of Pharmacological and Toxicological Methods | 1994

Guanine nucleotide binding regulatory proteins: Their characteristics and identification

Nawab Ali; Devendra K. Agrawal

Many biological signals are processed by the binding of chemicals to cell surface receptors. Signals are switched to intracellular language via guanine nucleotide binding regulatory proteins (G-proteins) which are present in all eukaryotic cells. Thus, G-proteins serve as interfaces between receptor-response coupling. Two forms of G-proteins have been reported: conventional G-proteins which are heterotrimeric and consist of alpha, beta, and gamma subunits, and monomeric small molecular weight G-proteins which are generally found as single polypeptides. Recently, high molecular weight G-proteins have also been described. The family of G-proteins contains multiple genes that encode the alpha, beta, or gamma subunits. G-proteins play a pivotal role in excitation-contraction coupling in smooth muscle function and control metabolic and secretory processes. In this review article, we have given a brief overview on the characteristics and methodology for the identification of G-proteins. The heterotrimeric G-proteins are generally identified by Western blotting and ADP-ribosylation with bacterial toxins. The monomeric and high molecular weight G-proteins have been identified by [35S]GTP delta S overlay technique and photoaffinity labeling, respectively. Recently, the use of molecular genetic probes has made it possible to investigate the expression of the message for various G-proteins.


Journal of Experimental Botany | 2012

Reduction of inositol (1,4,5)–trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants

Mohammad Alimohammadi; Kanishka de Silva; Clarisse Ballu; Nawab Ali; Mariya V. Khodakovskaya

The phosphoinositol pathway is one of the major eukaryotic signalling pathways. The metabolite of the phosphoinositol pathway, inositol- (1,4,5) trisphosphate (InsP3), is a regulator of plant responses to a wide variety of stresses, including light, drought, cold, and salinity. It was found that the expression of InsP 5-ptase, the enzyme that hydrolyses InsP3, also dramatically affects the levels of inositol phosphate metabolites and the secondary metabolites in transgenic tomato plants. Tomato plants expressing InsP 5-ptase exhibited a reduction in the levels of several important inositol phosphates, including InsP1, InsP2, InsP3, and InsP4. Reduced levels of inositol phosphates accompanied an increase in the accumulation of phenylpropanoids (rutin, chlorogenic acid) and ascorbic acid (vitamin C) in the transgenic fruits of tomato plants. The enhanced accumulation of these metabolites in transgenic tomato plants was in direct correspondence with the observed up-regulation of the genes that express the key enzymes of ascorbic acid metabolism (myo-inositol oxygenase, MIOX; L-galactono-γ-lactone dehydrogenase, GLDH) and phenylpropanoid metabolism (chalcone synthase, CHS1; cinnamoyl-CoA shikimate/quinate transferase, HCT). To understand the molecular links between the activation of different branches of plant metabolism and InsP3 reduction in tomato fruits, the expression of transcription factors known to be involved in light signalling was analysed by real-time RT-PCR. The expression of LeHY5, SIMYB12, and LeELIP was found to be higher in fruits expressing InsP 5-ptase. These results suggest possible interconnections between phosphoinositol metabolism, light signalling, and secondary metabolism in plants. Our study also revealed the biotechnological potential for the genetic improvement of crop plants by the manipulation of the phosphoinositol pathway.


Biochimica et Biophysica Acta | 1998

Vasopressin-induced activation of protein kinase C in renal epithelial cells.

Nawab Ali; Surasak Kantachuvesiri; Joan I. Smallwood; Lawrence J. Macala; Carlos M. Isales; Jing Ji; Robert F. Reilly; John P. Hayslett

Recent studies indicate that the actions of arginine vasopressin (AVP) and other agonists that stimulate electrogenic sodium transport in renal epithelial A6 cells are linked to a Ca(2+)-mobilizing signal transduction mechanism that involves generation of inositol trisphosphate. Since diacylglycerol is the other product in this pathway, studies were performed to determine the possible role of PKC in the stimulation of sodium transport. AVP induced a biphasic increase in diacylglycerol generation, characterized by an initial rapid rise and then a sustained elevation, and PKC activation, reflected by phosphorylation of a specific 80 kDa myristoylated alanine-rich PKC substrate (MARCKS). To determine the PKC isoform(s) involved in this process, immunoblot analysis was performed using antisera that recognize both classical PKC isoforms, XPKC-I and XPCK-II, cloned from Xenopus oocytes. The transcripts of both isoforms were expressed in the A6 cell. Since protein recognized by antisera was translocated from cytosol to the particulate fraction after exposure to AVP, one or both isoforms were activated in the A6 cell. Further studies showed that cyclohexyladenosine and insulin, additional agonists of sodium transport in A6 cells, also stimulated phosphorylation of MARCKS. These results argue that Ca(2+)-dependent PKC is involved in the action of AVP, and that of other agonists, which stimulate sodium transport.


Molecular and Cellular Biochemistry | 1989

G-proteins of rat liver membranes. Subcellular compartmentation and disposition in the plasma membrane

Nawab Ali; Graeme Milligan; William Howard Evans

SummaryThe distribution of the alpha- and beta-subunits of G-proteins and their disposition in rat liver plasma and intracellular membranes was investigated. Western blotting, using antibodies that recognised the alpha-subunit of the inhibitory and the beta-subunits of most G-proteins, identified 41 and 36 kDa polypeptides respectively in all plasma membrane functional domains, in endosomes as well as in Golgi membranes. Lysosomes were devoid of these subunits. The highest levels of G-protein subunits were found in bile canalicular plasma membranes prepared by density gradient centrifugation followed by free-flow electrophoresis. Separation of membrane proteins into extrinsic and intrinsic components was carried out by extraction of the membranes at pH 11.0 and by partitioning the membranes in Triton X-114/aqueous phases. The results demonstrated that the alpha- and beta-subunits were tightly associated with the hepatic membranes but they could be solubilised by extraction with detergent, e.g. SDS. Prolonged incubation in the presence of GTP analogues also released up to approximately 50% of the alpha-subunit of inhibitory G-proteins from membranes. The beta-subunit was still associated with membranes after alkaline extraction. The results emphasise the strong association of G-protein subunits with liver membranes, and show that these proteins are distributed widely in the plasma membrane and along the endocytic pathways of hepatocytes.


Cellular Signalling | 2000

Activation of particulate guanylate cyclase by adrenomedullin in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells

Nawab Ali; Sardar Y.K. Yousufzai; Ata A. Abdel-Latif

We investigated the effects of adrenomedullin (ADM) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ADM increased cGMP accumulation in a time- and concentration- dependent manner. The peptide increased cGMP formation in the transformed cells by 405-fold as compared to 1. 6-fold in primary cultured CISM cells. The basal cGMP concentrations in both cell types were comparable. In addition, ADM increased cAMP accumulation in SV-CISM-2 cells and in primary cultured cells by 18. 9- and 5.8-fold, respectively. The ADM receptor antagonist, ADM(26-52), but not the atrial natriuretic peptide (ANP) receptor antagonist, anantin, inhibited ADM-induced cGMP formation. The phorbol ester, phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylate cyclases in smooth muscle, blocked ADM-stimulated cGMP accumulation. In contrast, inhibitors of the soluble guanylate cyclases, such as LY83583 and ODQ, and inhibitors of the nitric oxide cascade had little effect on ADM-stimulated cGMP production. The stimulatory effect of ADM on cGMP formation is due to activation of the guanylate cyclase system and not to a much reduced phosphodiesterase activity. ADM stimulated guanylate cyclase activity in membrane fractions isolated from SV-CISM-2 cells in a concentration-dependent manner with EC(50) value of 72 nM. Pertussis toxin, an activator of the G-protein, Gi, inhibited ADM-stimulated cGMP accumulation, whereas cholera toxin, a stimulator of the Gs G-protein and subsequently cAMP accumulation, had little effect. Pretreatment of the plasma membrane fraction with Gialpha antibody attenuated ADM-stimulated guanylate cyclase activity by 75%. We conclude that ADM increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ADM receptor and subsequent stimulation of a Gi-mediated membrane-bound guanylate cyclase.

Collaboration


Dive into the Nawab Ali's collaboration.

Top Co-Authors

Avatar

Parimal Chowdhury

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rahul Mehta

University of Central Arkansas

View shared research outputs
Top Co-Authors

Avatar

Michael E. Soulsby

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexandru S. Biris

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enkeleda Dervishi

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar

Meena Mahmood

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar

Rakhee Agarwal

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar

Yang Xu

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar

Zhongrui Li

University of Arkansas at Little Rock

View shared research outputs
Researchain Logo
Decentralizing Knowledge