Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neimantas Vainorius is active.

Publication


Featured researches published by Neimantas Vainorius.


Nano Letters | 2013

Diameter-Dependent Photocurrent in InAsSb Nanowire Infrared Photodetectors

Johannes Svensson; Nicklas Anttu; Neimantas Vainorius; B. Mattias Borg; Lars-Erik Wernersson

Photoconductors using vertical arrays of InAs/InAs(1-x)Sb(x) nanowires with varying Sb composition x have been fabricated and characterized. The spectrally resolved photocurrents are strongly diameter dependent with peaks, which are red-shifted with diameter, appearing for thicker wires. Results from numerical simulations are in good agreement with the experimental data and reveal that the peaks are due to resonant modes that enhance the coupling of light into the wires. Through proper selection of wire diameter, the absorptance can be increased by more than 1 order of magnitude at a specific wavelength compared to a thin planar film with the same amount of material. A maximum 20% cutoff wavelength of 5.7 μm is obtained at 5 K for a wire diameter of 717 nm at a Sb content of x = 0.62, but simulations predict that detection at longer wavelengths can be achieved by increasing the diameter. Furthermore, photodetection in InAsSb nanowire arrays integrated on Si substrates is also demonstrated.


Nano Letters | 2015

Confinement in Thickness-Controlled GaAs Polytype Nanodots.

Neimantas Vainorius; Sebastian Lehmann; Daniel Jacobsson; Lars Samuelson; Kimberly A. Dick; Mats-Erik Pistol

Polytype nanodots are arguably the simplest nanodots than can be made, but their technological control was, up to now, challenging. We have developed a technique to produce nanowires containing exactly one polytype nanodot in GaAs with thickness control. These nanodots have been investigated by photoluminescence, which has been cross-correlated with transmission electron microscopy. We find that short (4-20 nm) zincblende GaAs segments/dots in wurtzite GaAs confine electrons and that the inverse system confines holes. By varying the thickness of the nanodots we find strong quantum confinement effects which allows us to extract the effective mass of the carriers. The holes at the top of the valence band have an effective mass of approximately 0.45 m0 in wurtzite GaAs. The thinnest wurtzite nanodot corresponds to a twin plane in zincblende GaAs and gives efficient photoluminescence. It binds an exciton with a binding energy of roughly 50 meV, including central cell corrections.


Nano Letters | 2016

Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System.

Alexander Berg; Sadegh Yazdi; Ali Nowzari; Kristian Storm; Vishal Jain; Neimantas Vainorius; Lars Samuelson; Jakob Birkedal Wagner; Magnus T. Borgström

Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum.


Nanotechnology | 2015

Growth parameter design for homogeneous material composition in ternary GaxIn1-xP nanowires.

Alexander Berg; Filip Lenrick; Neimantas Vainorius; Jason P. Beech; L. Reine Wallenberg; Magnus T. Borgström

Ternary nanowires (NWs) often exhibit varying material composition along the NW growth axis because of different diffusion properties of the precursor molecules. This constitutes a problem for optoelectronic devices for which a homogeneous material composition is most often of importance. Especially, ternary GaInP NWs grown under a constant Ga-In precursor ratio typically show inhomogeneous material composition along the length of the NW due to the complexity of low temperature precursor pyrolysis and relative rates of growth species from gas phase diffusion and surface diffusion that contribute to synthesis of particle-assisted growth. Here, we present the results of a method to overcome this challenge by in situ tuning of the trimethylindium molar fraction during growth of ternary Zn-doped GaInP NWs. The NW material compositions were determined by use of x-ray diffraction, scanning transmission electron microscopy and energy dispersive x-ray spectroscopy and the optical properties by photoluminescence spectroscopy.


Nano Letters | 2016

Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation

Neimantas Vainorius; Sebastian Lehmann; Anders Gustafsson; Lars Samuelson; Kimberly A. Dick; Mats Erik Pistol

It is of contemporary interest to fabricate nanowires having quantum confinement and one-dimensional subband formation. This is due to a host of applications, for example, in optical devices, and in quantum optics. We have here fabricated and optically investigated narrow, down to 10 nm diameter, wurtzite GaAs nanowires which show strong quantum confinement and the formation of one-dimensional subbands. The fabrication was bottom up and in one step using the vapor-liquid-solid growth mechanism. Combining photoluminescence excitation spectroscopy with transmission electron microscopy on the same individual nanowires, we were able to extract the effective masses of the electrons in the two lowest conduction bands as well as the effective masses of the holes in the two highest valence bands. Our results, combined with earlier demonstrations of thin crystal phase nanodots in GaAs, set the stage for the fabrication of crystal phase quantum dots having full three-dimensional confinement.


Nano Letters | 2013

Semiconductor-Oxide Heterostructured Nanowires Using Postgrowth Oxidation.

Jesper Wallentin; Martin Ek; Neimantas Vainorius; Kilian Mergenthaler; Lars Samuelson; Mats-Erik Pistol; Reine Wallenberg; Magnus T. Borgström

Semiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires. Complete epitaxial AlP-InP nanowire structures were first grown in an oxygen-free environment. Subsequent exposure to air converted the AlP segments into amorphous aluminum oxide segments, leaving isolated InP segments in an oxide matrix. InP quantum dots formed on the nanowire sidewalls exhibit room temperature photoluminescence with small line widths (down to 15 meV) and high intensity. This optical performance, together with the control of heterostructure segment length, diameter, and position, opens up for optoelectrical applications at room temperature.


Nanotechnology | 2016

Sn-seeded GaAs nanowires grown by MOVPE

Rong Sun; Neimantas Vainorius; Daniel Jacobsson; Mats-Erik Pistol; Sebastian Lehmann; Kimberly A. Dick

It has previously been reported that in situ formed Sn nanoparticles can successfully initiate GaAs nanowire growth with a self-assembled radial p-n junction composed of a Sn-doped n-type core and a C-doped p-type shell. In this paper, we investigate the effect of fundamental growth parameters on the morphology and crystal structure of Sn-seeded GaAs nanowires. We show that growth can be achieved in a broad temperature window by changing the TMGa precursor flow simultaneously with decreasing temperature to prevent nanowire kinking at low temperatures. We find that changes in the supply of both AsH3 and TMGa can lead to nanowire kinking and that the formation of twin planes is closely related to a low V/III ratio. From PL results, we observe an increase of the average luminescence energy induced by heavy doping which shifts the Fermi level into the conduction band. Furthermore, the doping level of Sn and C is dependent on both the temperature and the V/III ratio. These results indicate that using Sn as the seed particle for nanowire growth is quite different from traditionally used Au in for example growth conditions and resulting nanowire properties. Thus, it is very interesting to explore alternative metal seed particles with controllable introduction of other impurities.


Nanoscale | 2018

Temperature dependent electronic band structure of wurtzite GaAs nanowires

Neimantas Vainorius; Simon Kubitza; Sebastian Lehmann; Lars Samuelson; Kimberly A. Dick; Mats Erik Pistol

It has recently become possible to grow GaAs in the wurtzite crystal phase. This ability allows interesting tests of band-structure theory. Wurtzite GaAs has two closely spaced direct conduction bands as well as three nondegenerate valence bands. The energies of the band edges are not well known, in particular not as a function of temperature. In order to improve the accuracy we have studied the temperature dependence of the conduction band minimum as well as of the second valence band maximum using resonant Raman scattering (of up to 3LO Raman lines). We find that the temperature dependence of the bandgap in wurtzite GaAs is very similar to that in zinc blende GaAs. Our results show that they have the same band gaps not only at 7 K but also at room temperature to within 5 meV. This is in some discrepancy with previous work. We find that the energy difference between the first two Γ9V and Γ7V valence bands is constant, around 100 meV, over the investigated temperature range, 7 K to 300 K. Due to a fortuitous spacing of the energy bands we find a very unexpected and strong quadruple resonance in the resonant Raman scattering.


Nature Communications | 2017

Anti-Stokes photoluminescence probing k-conservation and thermalization of minority carriers in degenerately doped semiconductors

Kilian Mergenthaler; Nicklas Anttu; Neimantas Vainorius; Mahtab Aghaeipour; Sebastian Lehmann; Magnus T. Borgström; Lars Samuelson; M.-E. Pistol

It has recently been found that anti-Stokes photoluminescence can be observed in degenerately n-doped indium phosphide nanowires, when exciting directly into the electron gas. This anti-Stokes mechanism has not been observed before and allows the study of carrier relaxation and recombination using standard photoluminescence techniques. It is important to know if this anti-Stokes photoluminescence also occurs in bulk semiconductors as well as its relation to carrier recombination and relaxation. Here we show that similar anti-Stokes photoluminescence can indeed be observed in degenerately doped bulk indium phosphide and gallium arsenide and is caused by minority carriers scattering to high momenta by phonons. We find in addition that the radiative electron-hole recombination is highly momentum-conserving and that photogenerated minority carriers recombine before relaxing to the band edge at low temperatures. These observations challenge the use of models assuming thermalization of minority carriers in the analysis of highly doped devices.Anti-Stokes luminescence - the emission of photons with higher energy than those absorbed – in nanomaterials is widely used for optoelectronic applications. Here the authors observe it in degenerately doped bulk InP and GaAs, indicating it as a more general property of direct bandgap semiconductors.


Physical Review B | 2014

Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires

Anders Gustafsson; Sebastian Lehmann; Daniel Jacobsson; Neimantas Vainorius

Collaboration


Dive into the Neimantas Vainorius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge