Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nelson C. Di Paolo is active.

Publication


Featured researches published by Nelson C. Di Paolo.


Nature | 2007

Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells

Tobias Junt; E. Ashley Moseman; Matteo Iannacone; Steffen Massberg; Philipp A. Lang; Marianne Boes; Katja Fink; Sarah E. Henrickson; Dmitry M. Shayakhmetov; Nelson C. Di Paolo; Nico van Rooijen; Thorsten R. Mempel; Sean P. J. Whelan; Ulrich H. von Andrian

Lymph nodes prevent the systemic dissemination of pathogens such as viruses that infect peripheral tissues after penetrating the body’s surface barriers. They are also the staging ground of adaptive immune responses to pathogen-derived antigens. It is unclear how virus particles are cleared from afferent lymph and presented to cognate B cells to induce antibody responses. Here we identify a population of CD11b+CD169+MHCII+ macrophages on the floor of the subcapsular sinus (SCS) and in the medulla of lymph nodes that capture viral particles within minutes after subcutaneous injection. Macrophages in the SCS translocated surface-bound viral particles across the SCS floor and presented them to migrating B cells in the underlying follicles. Selective depletion of these macrophages compromised local viral retention, exacerbated viraemia of the host, and impaired local B-cell activation. These findings indicate that CD169+ macrophages have a dual physiological function. They act as innate ‘flypaper’ by preventing the systemic spread of lymph-borne pathogens and as critical gatekeepers at the lymph–tissue interface that facilitate the recognition of particulate antigens by B cells and initiate humoral immune responses.


Immunity | 2009

Virus Binding to a Plasma Membrane Receptor Triggers Interleukin-1α-Mediated Proinflammatory Macrophage Response In Vivo

Nelson C. Di Paolo; Edward A. Miao; Yoichiro Iwakura; Kaja Murali-Krishna; Alan Aderem; Richard A. Flavell; Thalia Papayannopoulou; Dmitry M. Shayakhmetov

The recognition of viral components by host pattern-recognition receptors triggers the induction of the antiviral innate immune response. Toll-like receptor 9 (TLR9) and NLRP3 inflammasome were shown to be the principal specific sensors of viral double-stranded DNA. Here we present evidence that macrophages in vivo activated an innate immune response to a double-stranded DNA virus, adenovirus (Ad), independently of TLR9 or NLRP3 inflammasome. In response to Ad, macrophage-derived IL-1 alpha triggered IL-1RI-dependent production of a defined set of proinflammatory cytokines and chemokines. The IL-1 alpha-mediated response required a selective interaction of virus arginine-glycine-aspartic acid (RGD) motifs with macrophage beta(3) integrins. Thus, these data identify IL-1 alpha-IL-1RI as a key pathway allowing for the activation of proinflammatory responses to the virus, independently of its genomic nucleic acid recognition.


Science | 2012

Coagulation Factor X Activates Innate Immunity to Human Species C Adenovirus

Konstantin Doronin; Justin W. Flatt; Nelson C. Di Paolo; Reeti Khare; Oleksandr Kalyuzhniy; Mauro Acchione; John P. Sumida; Umeharu Ohto; Toshiyuki Shimizu; Sachiko Akashi-Takamura; Kensuke Miyake; James W. MacDonald; Theo K. Bammler; Richard P. Beyer; Frederico M. Farin; Phoebe L. Stewart; Dmitry M. Shayakhmetov

Wound Healing and Immunity Although wound healing and infection are often overlapping processes, whether the wound healing response modulates the immune response is not well understood. Doronin et al. (p. 795, published online 27 September; see the Perspective by Herzog and Ostrov) now show that coagulation factor X, an important component of the blood clotting cascade, helps to trigger antiviral immunity in response to adenovirus infection in mice. Factor X binds to human type C adenovirus with very high affinity. Structural analysis identified the critical binding residues between factor X and adenovirus, which, when mutated, inhibited binding. Despite being able to infect splenic macrophages in mice, transcriptional profiling of spleens from mice infected with a mutant adenovirus unable to bind to factor X revealed impaired activation of signaling cascades associated with innate immunity. Tagging adenovirus with a serum protein prompts an immune response when the virus enters cells. Although coagulation factors play a role in host defense for “living fossils” such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding–ablated virus failed to activate a distinct network of nuclear factor κB–dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor “decoration” of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.


Cancer Research | 2006

Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses

Nelson C. Di Paolo; Sebastian Tuve; Shaoheng Ni; Karl Erik Hellström; Ingegerd Hellström; André Lieber

Heat shock proteins such as gp96 have the ability to chaperone peptides and activate antigen-presenting cells. In this study, we tested whether adenovirus-mediated overexpression of secreted or membrane-associated forms of gp96 in tumor cells would stimulate an antitumor immune response. Studies were carried out in C57Bl/6 mice bearing aggressively growing s.c. tumors derived from syngeneic TC-1 cells, a cell line that expresses HPV16 E6 and E7 proteins. We found that secreted gp96 can induce protective and therapeutic antitumor immune responses. Our data also indicate that the antitumor effect of sgp96 expression seems to be limited by the induction of suppressive regulatory T cells (Treg). TC-1 tumor transplantation increased the number of splenic and tumor-infiltrating Tregs. Importantly, treatment of mice with low-dose cyclophosphamide decreased the number of Tregs and enhanced the immunostimulatory effect of sgp96 expression. We also tested whether an oncolytic vector (Ad.IR-E1A/TRAIL), that is able to induce tumor cell apoptosis and, potentially, release cryptic tumor epitopes in immunogenic form, could stimulate antitumor immune responses. Although tumor cells infected ex vivo with Ad.IR-E1A/TRAIL had no antitumor effect when used as a vaccine alone, the additional treatment with low-dose cyclophosphamide resulted in the elimination of pre-established tumors. This study gives a rationale for testing approaches that suppress Tregs in combination with oncolytic or immunostimulatory vectors.


Nature Immunology | 2016

Interleukin 1[alpha] and the inflammatory process

Nelson C. Di Paolo; Dmitry M. Shayakhmetov

Inflammation occurs after disruption of tissue homeostasis by cell stress, injury or infection and ultimately involves the recruitment and retention of cells of hematopoietic origin, which arrive at the affected sites to resolve damage and initiate repair. Interleukin 1α (IL-1α) and IL-1β are equally potent inflammatory cytokines that activate the inflammatory process, and their deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. Although much attention has been given to understanding the biogenesis of IL-1β, the biogenesis of IL-1α and its distinctive role in the inflammatory process remain poorly defined. In this review we examine key aspects of IL-1α biology and regulation and discuss its emerging importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases.


Molecular Therapy | 2009

Redundant and Synergistic Mechanisms Control the Sequestration of Blood-born Adenovirus in the Liver

Nelson C. Di Paolo; Nico van Rooijen; Dmitry M. Shayakhmetov

Human adenovirus (Ad) is a ubiquitous pathogen causing a wide range of diseases. Although the interactions of human Ad serotype 5 (Ad5) with susceptible cells in vitro are known in great detail, host factors controlling the tissue specificity of Ad5 infection in vivo remain poorly understood. Here, we analyzed the mechanisms of sequestration by the liver for blood-born human Ads and Ad5-based vectors. Our data suggest that several known mechanisms that lead to Ad5 sequestration by the liver become engaged in a redundant, sequential, and synergistic manner to ensure the rapid clearance of circulating virus particles from the blood. These mechanisms include (i) trapping of the virus by liver residential macrophages, Kupffer cells; (ii) Ad5 hepatocyte infection via blood factor-hexon interactions; and (iii) Ad5 penton RGD motif-mediated interactions with liver endothelial cells and hepatocytes, mediating virus retention in the space of Disse. More important, we show that when all of these mechanisms are simultaneously inactivated via mutations of Ad5 capsid proteins and pharmacological interventions, virus sequestration by the liver is markedly reduced. Therefore, our study is the first demonstration of the principal possibility of ablating the sequestration of blood-born Ad in the liver via specific inactivation of a defined set of mechanisms that control this process.


Journal of Virology | 2007

Fiber Shaft-Chimeric Adenovirus Vectors Lacking the KKTK Motif Efficiently Infect Liver Cells In Vivo

Nelson C. Di Paolo; Oleksandr Kalyuzhniy; Dmitry M. Shayakhmetov

ABSTRACT The molecular mechanisms governing the infectivity of adenovirus (Ad) toward specific cell and tissue types in vivo remain poorly understood. The direct Ad binding to hepatic heparan sulfate proteoglycans via the KKTK motif within the fiber shaft domain was suggested to be the major mechanism of Ad liver cell infection in vivo. Here, we describe the generation and in vitro and in vivo infectivity studies of Ad5-based vectors possessing long Ad31- or Ad41-derived fiber shaft domains, which lack the KKTK motif. We found that all the critical early steps of Ad infection, including attachment to the cellular receptor, internalization, and virus genome transfer into the nucleus, occurred with similar levels of efficiency for fiber shaft-chimeric vectors and unmodified Ad5. Upon intravenous delivery into mice, fiber shaft-chimeric vectors accumulated in liver tissue, transduced liver cells, and induced the production of proinflammatory cytokines (tumor necrosis factor alpha and interleukin-6) and the chemokine monocyte chemoattractant protein 1 at levels indistinguishable from those observed for Ad5. Thus, our data provide evidence that the Ad5 fiber shaft amino acid sequence does not play any substantial role in determining adenovirus infectivity toward hepatic cells in vivo. The data obtained contribute to improving our understanding of the molecular mechanisms determining Ad infectivity and biodistribution in vivo and may aid in designing novel Ad-based vectors for gene therapy applications.


Immunity | 2015

Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection

Nelson C. Di Paolo; Shahin Shafiani; Tracey Day; Thalia Papayannopoulou; David W. Russell; Yoichiro Iwakura; David R. Sherman; Kevin B. Urdahl; Dmitry M. Shayakhmetov

The interleukin-1 receptor I (IL-1RI) is critical for host resistance to Mycobacterium tuberculosis (Mtb), yet the mechanisms of IL-1RI-mediated pathogen control remain unclear. Here, we show that without IL-1RI, Mtb-infected newly recruited Ly6G(hi) myeloid cells failed to upregulate tumor necrosis factor receptor I (TNF-RI) and to produce reactive oxygen species, resulting in compromised pathogen control. Furthermore, simultaneous ablation of IL-1RI and TNF-RI signaling on either stroma or hematopoietic cells led to early lethality, indicating non-redundant and synergistic roles of IL-1 and TNF in mediating macrophage-stroma cross-talk that was critical for optimal control of Mtb infection. Finally, we show that even in the presence of functional Mtb-specific adaptive immunity, the lack of IL-1α and not IL-1β led to an exuberant intracellular pathogen replication and progressive non-resolving inflammation. Our study reveals functional interdependence between IL-1 and TNF in enabling Mtb control mechanisms that are critical for host survival.


PLOS Pathogens | 2014

IL-1α and Complement Cooperate in Triggering Local Neutrophilic Inflammation in Response to Adenovirus and Eliminating Virus-Containing Cells

Nelson C. Di Paolo; Lisa K. Baldwin; Eric E. Irons; Thalia Papayannopoulou; Stephen Tomlinson; Dmitry M. Shayakhmetov

Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad) results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+) in the splenic marginal zone (MZ) play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs) in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation) or CR2-fH (inhibits only the alternative complement activation pathway) prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity – the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement – in orchestrating local inflammation and functional cooperation of PMNs and resident macrophages in the splenic MZ, which collectively contribute to limiting disseminated pathogen spread via elimination of virus-containing cells.


Biotechnology & Genetic Engineering Reviews | 2006

Development of group B adenoviruses as gene transfer vectors

Daniel Stone; Nelson C. Di Paolo; André Lieber

One of the olajor limitations to gene therapy is the need for effective gene delivery vehicles and, due to their natural high efficiency of exogenous gene transfer, viral vectors have been widely studied. The tropism of each virus is a major determinant of its therapeutic use and, due to their ability to efficiently infect multiple therapeutic target cell populations, adenovirus (Ad) vectors have shown considerable potentia) as vectors for delivery of therapeutic genes. To date1 51 human Ad serotypes have been identified~ classified into groups A through F (Table 6.1), and for almost two decades, vectors derived [roln group C serotype Ad5 have been extensively used for gene transfer studies. These AdS-based vectors are able to efficiently infect rnany manlnlalian cell types (including both Initotic and post-mitotic cells) through interaction with a prinlary attachnlent receptor1 the coxsackie and adenovirus receptor (CAR) (Bergclson ef al., 1997). Although they can transduce nlany tissue types, Ad5-based vectors are unable to efficiently transduce several potential disease target cell types., including haerllatopoietic stenl cells (HSCs) (Neering et lIl., 1996; Watanabe et aI., 1996) and dendritic cells (Des) (Arthur et a[., 1997), without using

Collaboration


Dive into the Nelson C. Di Paolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Lieber

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Stone

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Shaoheng Ni

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Yoichiro Iwakura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Irons

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge