Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niamh E. Buckley is active.

Publication


Featured researches published by Niamh E. Buckley.


Breast Cancer Research and Treatment | 2010

BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer

Julia J. Gorski; Colin R. James; Jennifer E. Quinn; Gail E. Stewart; Kieran Crosbie Staunton; Niamh E. Buckley; Fionnuala McDyer; Richard D. Kennedy; Richard Wilson; Paul B. Mullan; D. Paul Harkin

Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.


Oncogene | 2012

BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers

D Tkocz; Nyree Crawford; Niamh E. Buckley; F B Berry; Richard D. Kennedy; Julia J. Gorski; D. P. Harkin; Paul B. Mullan

In this study we describe a novel interaction between the breast/ovarian tumor suppressor gene BRCA1 and the transcription factor GATA3, an interaction, which is important for normal breast differentiation. We show that the BRCA1–GATA3 interaction is important for the repression of genes associated with triple-negative and basal-like breast cancer (BLBCs) including FOXC1, and that GATA3 interacts with a C-terminal region of BRCA1. We demonstrate that FOXC1 is an essential survival factor maintaining the proliferation of BLBCs cell lines. We define the mechanistic basis of this corepression and identify the GATA3-binding site within the FOXC1 distal promoter region. We show that BRCA1 and GATA3 interact on the FOXC1 promoter and that BRCA1 requires GATA3 for recruitment to this region. This interaction requires fully functional BRCA1 as a mutant BRCA1 protein is unable to localize to the FOXC1 promoter or repress FOXC1 expression. We demonstrate that this BRCA1–GATA3 repression complex is not a FOXC1-specific phenomenon as a number of other genes associated with BLBCs such as FOXC2, CXCL1 and p-cadherin were also repressed in a similar manner. Finally, we demonstrate the importance of our findings by showing that loss of GATA3 expression or aberrant FOXC1 expression contributes to the drug resistance and epithelial-to-mesenchymal transition-like phenotypes associated with aggressive BLBCs.


Oncogene | 2005

The 2,5 oligoadenylate synthetase/RNaseL pathway is a novel effector of BRCA1- and interferon-gamma-mediated apoptosis.

Paul B. Mullan; Alison M. Hosey; Niamh E. Buckley; Jennifer E. Quinn; Richard D. Kennedy; Patrick G. Johnston; D. Paul Harkin

BRCA1 has been reported to have roles in DNA damage repair, cell cycle checkpoint control, transcriptional regulation and ubiquitination. We have previously demonstrated that BRCA1 is a potent activator of a subset of interferon (IFN)-regulated genes and that BRCA1 synergistically activated a number of these genes in the presence of IFN-γ, but not type I IFNs. Here we report that one of these targets, 2,5 oligoadenylate synthetase (2,5 OAS), is a mediator of BRCA1/IFN-γ-induced apoptosis. We show that the induction of 2,5 OAS in response to IFN-γ is BRCA1 and STAT1 dependent. Consistent with a role as a negative regulator of proliferation, transient transfection of 2,5 OAS into breast cancer cell lines results in decreased colony growth and apoptosis. Furthermore we show that IFN-γ-induced apoptosis is dependent on functional BRCA1 and STAT1 and we demonstrate that IFN-γ-induced apoptosis is dependent on 2,5 OAS induction. 2,5 OAS is the only known upstream regulator of RNaseL, a recently identified hereditary prostate tumour suppressor gene implicated in apoptosis. We propose that BRCA1 may be an upstream regulator of RNaseL, acting in concert with IFN-γ to transcriptionally activate 2,5 OAS, leading to the downstream activation of RNaseL and apoptosis.


Oncogene | 2010

T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells

K L Redmond; Nyree Crawford; H Farmer; Zenobia D'Costa; G J O'Brien; Niamh E. Buckley; Richard D. Kennedy; Patrick G. Johnston; D. P. Harkin; Paul B. Mullan

T-box 2 (TBX2) is a transcription factor involved in mammary development and is known to be overexpressed in a subset of aggressive breast cancers. TBX2 has previously been shown to repress growth control genes such as p14ARF and p21WAF1/cip1. In this study we show that TBX2 drives proliferation in breast cancer cells and this is abrogated after TBX2 small interfering RNA (siRNA) knockdown or after the expression of a dominant-negative TBX2 protein. Using microarray analysis we identified a large cohort of novel TBX2-repressed target genes including the breast tumour suppressor NDRG1 (N-myc downregulated gene 1). We show that TBX2 targets NDRG1 through a previously undescribed mechanism involving the recruitment of early growth response 1 (EGR1). We show EGR1 is required for the ability of TBX2 to repress NDRG1 and drive cell proliferation. We show that TBX2 interacts with EGR1 and that TBX2 requires EGR1 to target the NDRG1 proximal promoter. Abrogation of either TBX2 or EGR1 expression is accompanied by the upregulation of cell senescence and apoptotic markers. NDRG1 can recapitulate these effects when transfected into TBX2-expressing cells. Together, these data identify a novel mechanism for TBX2-driven oncogenesis and highlight the importance of NDRG1 as a growth control gene in breast tissue.


Journal of the National Cancer Institute | 2017

Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer.

Eileen Parkes; Steven M. Walker; Laura E. Taggart; Nuala McCabe; Laura A. Knight; Richard Wilkinson; Karen D. McCloskey; Niamh E. Buckley; Kienan Savage; Manuel Salto-Tellez; Stephen McQuaid; Mary T. Harte; Paul B. Mullan; D. Paul Harkin; Richard D. Kennedy

Background: Previously we identified a DNA damage response–deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. Methods: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. Results: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher’s exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response–proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response–proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle–specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. Conclusions: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint–based therapies.


Cancer Research | 2011

The {Delta}Np63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer.

Niamh E. Buckley; Susan Conlon; Karin Jirström; Elaine Kay; Nyree Crawford; Anthony O'Grady; Katherine M. Sheehan; Simon S. Mc Dade; Ching-Wei Wang; Dennis J. McCance; Patrick G. Johnston; Richard D. Kennedy; D. Paul Harkin; Paul B. Mullan

Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that ΔNp63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform ΔNp63γ along with transcription factor isoforms AP-2α and AP-2γ. BRCA1 required ΔNp63γ and AP-2γ to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the ΔNp63 isoforms. In mammary stem/progenitor cells, siRNA-mediated knockdown of ΔNp63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of ΔNp63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-ΔNp63 signaling are key events in the pathogenesis of basal-like breast cancer.


Molecular Cancer Research | 2007

BRCA1 Regulates IFN-γ Signaling through a Mechanism Involving the Type I IFNs

Niamh E. Buckley; Alison M. Hosey; Julia J. Gorski; James W. Purcell; Jude M. Mulligan; D. Paul Harkin; Paul B. Mullan

BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-γ, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-γ. We also show that the induction of IRF-7 by BRCA1 and IFN-γ is dependent on the type I IFNs, IFN-α and IFN-β. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-γ. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-α and IFN-β in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-γ regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling. (Mol Cancer Res 2007;5(3):261–70)


Nucleic Acids Research | 2013

BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers

Niamh E. Buckley; Caoimhe B. Nic An tSaoir; Jaine K. Blayney; Lisa C. Oram; Nyree Crawford; Zenobia D’Costa; Jennifer E. Quinn; Richard D. Kennedy; D. Paul Harkin; Paul B. Mullan

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.


Scientific Reports | 2016

Quantification of HER2 heterogeneity in breast cancer-implications for identification of sub-dominant clones for personalised treatment.

Niamh E. Buckley; Claire Forde; Darragh G. McArt; David P. Boyle; Paul B. Mullan; Jacqueline James; Perry Maxwell; Stephen McQuaid; Manuel Salto-Tellez

Breast cancer is a heterogeneous disease, at both an inter- and intra-tumoural level. Appreciating heterogeneity through the application of biomarkers and molecular signatures adds complexity to tumour taxonomy but is key to personalising diagnosis, treatment and prognosis. The extent to which heterogeneity exists, and its interpretation remains a challenge to pathologists. Using HER2 as an exemplar, we have developed a simple reproducible heterogeneity index. Cell-to-cell HER2 heterogeneity was extensive in a proportion of both reported ‘amplified’ and ‘non-amplified’ cases. The highest levels of heterogeneity objectively identified occurred in borderline categories and higher ratio non-amplified cases. A case with particularly striking heterogeneity was analysed further with an array of biomarkers in order to assign a molecular diagnosis. Broad biological complexity was evident. In essence, interpretation, depending on the area of tumour sampled, could have been one of three distinct phenotypes, each of which would infer different therapeutic interventions. Therefore, we recommend that heterogeneity is assessed and taken into account when determining treatment options.


Cell Death and Disease | 2014

S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability

Niamh E. Buckley; Zenobia D'Costa; M Kaminska; Paul B. Mullan

Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.

Collaboration


Dive into the Niamh E. Buckley's collaboration.

Top Co-Authors

Avatar

Paul B. Mullan

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

D. Paul Harkin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nyree Crawford

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Eileen Parkes

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

James Beirne

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Denis Paul Harkin

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge