Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul B. Mullan is active.

Publication


Featured researches published by Paul B. Mullan.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


Oncogene | 2006

The role of BRCA1 in transcriptional regulation and cell cycle control

Paul B. Mullan; J.E. Quinn; D. P. Harkin

The exact functions of BRCA1 have not been fully described but it now seems apparent that it has roles in DNA damage repair, transcriptional regulation, cell cycle control and most recently in ubiquitylation. These functions of BRCA1 are most likely interdependent but this review will focus on the role of BRCA1 in relation to transcriptional regulation and in particular how this impacts upon cell cycle control. We will (i) describe the structure of BRCA1 and how it may contribute to its transcription function; (ii) describe the interaction of BRCA1 with the core transcriptional machinery (RNA polII); (iii) describe how BRCA1 may regulate transcription at an epigenetic level through chromatin modification; (iv) discuss the role of BRCA1 in modulating transcription through its association with sequence-specific transcription factors. Finally, we will discuss the possible effects of BRCA1 transcriptional regulation on downstream targets with known roles in cell cycle control.


Clinical Cancer Research | 2007

BRCA1 mRNA Expression Levels Predict for Overall Survival in Ovarian Cancer after Chemotherapy

J.E. Quinn; Colin R. James; Gail E. Stewart; Jude M. Mulligan; Patricia White; G. K. F. Chang; Paul B. Mullan; Patrick G. Johnston; Richard Wilson; D. P. Harkin

Purpose: We investigated whether BRCA1 mRNA expression levels may represent a biomarker of survival in sporadic epithelial ovarian cancer following chemotherapy treatment. Experimental Design: The effect of loss of BRCA1 expression on chemotherapy response in ovarian cancer was measured in vitro using dose inhibition assays and Annexin V flow cytometry. Univariate and multivariate analyses were done to evaluate the relationship between BRCA1 mRNA expression levels and survival after chemotherapy treatment in 70 fresh frozen ovarian tumors. Results: We show that inhibition of endogenous BRCA1 expression in ovarian cancer cell lines results in increased sensitivity to platinum therapy and decreased sensitivity to antimicrotubule agents. In addition, we show that patients with low/intermediate levels of BRCA1 mRNA have a significantly improved overall survival following treatment with platinum-based chemotherapy in comparison with patients with high levels of BRCA1 mRNA (57.2 versus 18.2 months; P = 0.0017; hazard ratio, 2.9). Furthermore, overall median survival for higher-BRCA1-expressing patients was found to increase following taxane-containing chemotherapy (23.0 versus 18.2 months; P = 0.12; hazard ratio, 0.53). Conclusions: We provide evidence to support a role for BRCA1 mRNA expression as a predictive marker of survival in sporadic epithelial ovarian cancer.


Oncogene | 2001

BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents

Paul B. Mullan; Jennifer E. Quinn; Paula M. Gilmore; Stewart McWilliams; Heather N. Andrews; Celine Gervin; Nuala McCabe; Sarah McKenna; Pat White; Young-Han Song; Shyamala Maheswaran; Edison T. Liu; Daniel A. Haber; Patrick G. Johnston; D. Paul Harkin

BRCA1 is a tumour suppressor gene implicated in the predisposition to early onset breast and ovarian cancer. We have generated cell lines with inducible expression of BRCA1 to evaluate its role in mediating the cellular response to various chemotherapeutic drugs commonly used in the treatment of breast and ovarian cancer. Induction of BRCA1 in the presence of Taxol and Vincristine resulted in a dramatic increase in cell death; an effect that was preceded by an acute arrest at the G2/M phase of the cell cycle and which correlated with BRCA1 mediated induction of GADD45. A proportion of the arrested cells were blocked in mitosis suggesting activation of both a G2 and a mitotic spindle checkpoint. In contrast, no specific interaction was observed between BRCA1 induction and treatment of cells with a range of DNA damaging agents including Cisplatin and Adriamycin. Inducible expression of GADD45 in the presence of Taxol induced both G2 and mitotic arrest in these cells consistent with a role for GADD45 in contributing to these effects. Our results support a role for both BRCA1 and GADD45 in selectively regulating a G2/M checkpoint in response to antimicrotubule agents and raise the possibility that their expression levels in cells may contribute to the toxicity observed with these compounds.


Cancer Research | 2005

BRCA1 and c-Myc Associate to Transcriptionally Repress Psoriasin, a DNA Damage–Inducible Gene

Richard D. Kennedy; Julia J. Gorski; Jennifer E. Quinn; Gail E. Stewart; Colin R. James; Stephen Moore; Karl Mulligan; Ethan Emberley; Tong F. Lioe; Patrick J. Morrison; Paul B. Mullan; George Reid; Patrick G. Johnston; Peter H. Watson; D. Paul Harkin

Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease-associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIalpha poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.


Cancer Research | 2010

BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription

Mary T. Harte; Garrett J. O'Brien; Niamh M. Ryan; Julia J. Gorski; Kienan Savage; Nyree Crawford; Paul B. Mullan; D. Paul Harkin

We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.


Breast Cancer Research and Treatment | 2010

BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer

Julia J. Gorski; Colin R. James; Jennifer E. Quinn; Gail E. Stewart; Kieran Crosbie Staunton; Niamh E. Buckley; Fionnuala McDyer; Richard D. Kennedy; Richard Wilson; Paul B. Mullan; D. Paul Harkin

Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.


Journal of the National Cancer Institute | 2014

Identification and Validation of an Anthracycline/Cyclophosphamide–Based Chemotherapy Response Assay in Breast Cancer

Jude M. Mulligan; Laura Hill; Steve Deharo; Gareth Irwin; David P. Boyle; Katherine E. Keating; Olaide Y. Raji; Fionnuala McDyer; Eamonn O’Brien; Max Bylesjo; Jennifer E. Quinn; Noralane M. Lindor; Paul B. Mullan; Colin R. James; Steven M. Walker; Peter Kerr; Jacqueline James; Timothy Davison; Vitali Proutski; Manuel Salto-Tellez; Patrick G. Johnston; Fergus J. Couch; D. Paul Harkin; Richard D. Kennedy

Background There is no method routinely used to predict response to anthracycline and cyclophosphamide–based chemotherapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast cancer patients through several mechanisms and results in sensitization to DNA-damaging agents. The aim of this study was to develop an assay to detect DDR-deficient tumors associated with loss of the FA/BRCA pathway, for the purpose of treatment selection. Methods DNA microarray data from 21 FA patients and 11 control subjects were analyzed to identify genetic processes associated with a deficiency in DDR. Unsupervised hierarchical clustering was then performed using 60 BRCA1/2 mutant and 47 sporadic tumor samples, and a molecular subgroup was identified that was defined by the molecular processes represented within FA patients. A 44-gene microarray-based assay (the DDR deficiency assay) was developed to prospectively identify this subgroup from formalin-fixed, paraffin-embedded samples. All statistical tests were two-sided. Results In a publicly available independent cohort of 203 patients, the assay predicted complete pathologic response vs residual disease after neoadjuvant DNA-damaging chemotherapy (5-fluorouracil, anthracycline, and cyclophosphamide) with an odds ratio of 3.96 (95% confidence interval [Cl] =1.67 to 9.41; P = .002). In a new independent cohort of 191 breast cancer patients treated with adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, a positive assay result predicted 5-year relapse-free survival with a hazard ratio of 0.37 (95% Cl = 0.15 to 0.88; P = .03) compared with the assay negative population. Conclusions A formalin-fixed, paraffin-embedded tissue-based assay has been developed and independently validated as a predictor of response and prognosis after anthracycline/cyclophosphamide–based chemotherapy in the neoadjuvant and adjuvant settings. These findings warrant further validation in a prospective clinical study.


Oncogene | 2012

BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers

D Tkocz; Nyree Crawford; Niamh E. Buckley; F B Berry; Richard D. Kennedy; Julia J. Gorski; D. P. Harkin; Paul B. Mullan

In this study we describe a novel interaction between the breast/ovarian tumor suppressor gene BRCA1 and the transcription factor GATA3, an interaction, which is important for normal breast differentiation. We show that the BRCA1–GATA3 interaction is important for the repression of genes associated with triple-negative and basal-like breast cancer (BLBCs) including FOXC1, and that GATA3 interacts with a C-terminal region of BRCA1. We demonstrate that FOXC1 is an essential survival factor maintaining the proliferation of BLBCs cell lines. We define the mechanistic basis of this corepression and identify the GATA3-binding site within the FOXC1 distal promoter region. We show that BRCA1 and GATA3 interact on the FOXC1 promoter and that BRCA1 requires GATA3 for recruitment to this region. This interaction requires fully functional BRCA1 as a mutant BRCA1 protein is unable to localize to the FOXC1 promoter or repress FOXC1 expression. We demonstrate that this BRCA1–GATA3 repression complex is not a FOXC1-specific phenomenon as a number of other genes associated with BLBCs such as FOXC2, CXCL1 and p-cadherin were also repressed in a similar manner. Finally, we demonstrate the importance of our findings by showing that loss of GATA3 expression or aberrant FOXC1 expression contributes to the drug resistance and epithelial-to-mesenchymal transition-like phenotypes associated with aggressive BLBCs.


Oncogene | 2005

The 2,5 oligoadenylate synthetase/RNaseL pathway is a novel effector of BRCA1- and interferon-gamma-mediated apoptosis.

Paul B. Mullan; Alison M. Hosey; Niamh E. Buckley; Jennifer E. Quinn; Richard D. Kennedy; Patrick G. Johnston; D. Paul Harkin

BRCA1 has been reported to have roles in DNA damage repair, cell cycle checkpoint control, transcriptional regulation and ubiquitination. We have previously demonstrated that BRCA1 is a potent activator of a subset of interferon (IFN)-regulated genes and that BRCA1 synergistically activated a number of these genes in the presence of IFN-γ, but not type I IFNs. Here we report that one of these targets, 2,5 oligoadenylate synthetase (2,5 OAS), is a mediator of BRCA1/IFN-γ-induced apoptosis. We show that the induction of 2,5 OAS in response to IFN-γ is BRCA1 and STAT1 dependent. Consistent with a role as a negative regulator of proliferation, transient transfection of 2,5 OAS into breast cancer cell lines results in decreased colony growth and apoptosis. Furthermore we show that IFN-γ-induced apoptosis is dependent on functional BRCA1 and STAT1 and we demonstrate that IFN-γ-induced apoptosis is dependent on 2,5 OAS induction. 2,5 OAS is the only known upstream regulator of RNaseL, a recently identified hereditary prostate tumour suppressor gene implicated in apoptosis. We propose that BRCA1 may be an upstream regulator of RNaseL, acting in concert with IFN-γ to transcriptionally activate 2,5 OAS, leading to the downstream activation of RNaseL and apoptosis.

Collaboration


Dive into the Paul B. Mullan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Paul Harkin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Niamh E. Buckley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer E. Quinn

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Nuala McCabe

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

D. P. Harkin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Colin R. James

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge