Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas A. Fisichelli is active.

Publication


Featured researches published by Nicholas A. Fisichelli.


PLOS ONE | 2014

Climate Exposure of US National Parks in a New Era of Change

William B. Monahan; Nicholas A. Fisichelli

US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.


PLOS ONE | 2015

Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat?

Nicholas A. Fisichelli; Gregor W. Schuurman; William B. Monahan; Pamela Ziesler

Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979–2013) at 340 parks and projected potential future visitation (2041–2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67–77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8–23%) and expansion of the visitation season at individual parks (13–31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to both capitalize on opportunities and minimize detriment related to changing visitation.


Global Change Biology | 2017

The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis).

Dylan Craven; Madhav P. Thakur; Erin K. Cameron; Lee E. Frelich; Robin Beauséjour; Robert B. Blair; Bernd Blossey; James C. Burtis; Amy Choi; Andrea Dávalos; Timothy J. Fahey; Nicholas A. Fisichelli; Kevin Gibson; I. Tanya Handa; Kristine N. Hopfensperger; Scott R. Loss; Victoria Nuzzo; John C. Maerz; Tara E. Sackett; Bryant C. Scharenbroch; Sandy M. Smith; Mark Vellend; Lauren Umek; Nico Eisenhauer

Abstract Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning.


Environmental Management | 2016

Is ‘Resilience’ Maladaptive? Towards an Accurate Lexicon for Climate Change Adaptation

Nicholas A. Fisichelli; Gregor W. Schuurman; Cat Hawkins Hoffman

Abstract Climate change adaptation is a rapidly evolving field in conservation biology and includes a range of strategies from resisting to actively directing change on the landscape. The term ‘climate change resilience,’ frequently used to characterize adaptation strategies, deserves closer scrutiny because it is ambiguous, often misunderstood, and difficult to apply consistently across disciplines and spatial and temporal scales to support conservation efforts. Current definitions of resilience encompass all aspects of adaptation from resisting and absorbing change to reorganizing and transforming in response to climate change. However, many stakeholders are unfamiliar with this spectrum of definitions and assume the more common meaning of returning to a previous state after a disturbance. Climate change, however, is unrelenting and intensifying, characterized by both directional shifts in baseline conditions and increasing variability in extreme events. This ongoing change means that scientific understanding and management responses must develop concurrently, iteratively, and collaboratively, in a science-management partnership. Divergent concepts of climate change resilience impede cross-jurisdictional adaptation efforts and complicate use of adaptive management frameworks. Climate change adaptation practitioners require clear terminology to articulate management strategies and the inherent tradeoffs involved in adaptation. Language that distinguishes among strategies that seek to resist change, accommodate change, and direct change (i.e., persistence, autonomous change, and directed change) is prerequisite to clear communication about climate change adaptation goals and management intentions in conservation areas.


Scientific Reports | 2015

Warming shifts 'worming': Effects of experimental warming on invasive earthworms in northern North America

Nico Eisenhauer; Artur Stefanski; Nicholas A. Fisichelli; Karen Rice; Roy L. Rich; Peter B. Reich

Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.


Ecosphere | 2015

Temperature and leaf nitrogen affect performance of plant species at range overlap

Nicholas A. Fisichelli; Artur Stefanski; Lee E. Frelich; Peter B. Reich

Plant growth and survival near range limits are likely sensitive to small changes in environmental conditions. Warming temperatures are causing range shifts and thus changes in species composition within range-edge ecotones; however, it is often not clear how temperature alters performance. Through an observational field study, we assessed temperature and nitrogen effects on survival and growth of co-occurring temperate (Acer saccharum) and boreal (Abies balsamea) saplings across their overlapping range limits in the Great Lakes region, USA. Across sampled ranges of soil texture, soil pH, and precipitation, it appears that temperature affects leaf nitrogen for A. saccharum near its northern range limit (R2 = 0.64), whereas there was no significant leaf N ~ temperature relationship for A. balsamea. Higher A. saccharum leaf N at warm sites was associated with increased survival and growth. Abies balsamea survival and growth were best modeled with summer temperature (negative relationship); performance at warm sites depended upon light availability, suggesting the shade-tolerance of this species near its southern range limits may be mediated by temperature. The ranges of these two tree species overlap across millions of hectares, and temperature and temperature-mediated nitrogen likely play important roles in their relative performance.


Journal of Plant Ecology-uk | 2016

Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota

Madhav P. Thakur; Peter B. Reich; Cameron Wagg; Nicholas A. Fisichelli; Marcel Ciobanu; Sarah E. Hobbie; Roy L. Rich; Artur Stefanski; Nico Eisenhauer

Aims Climate warming raises the probability of range expansions of warmadapted temperate species into areas currently dominated by coldadapted boreal species. Warming-induced plant range expansions could partly depend on how warming modifies relationships with soil biota that promote plant growth, such as by mineralizing nutrients. Here, we grew two pairs of congeneric herbaceous plants species together in soil with a 5-year warming history (ambient, +1.7°C, +3.4°C) and related their performances to plant-beneficial soil biota. Methods Each plant pair belonged to either the mid-latitude temperate climate or the higher latitude southern boreal climate. Warmed soils were extracted from a chamberless heating experiment at two field sites in the temperate-boreal ecotone of North America. To isolate potential effects of different soil warming histories, air temperature for the greenhouse experiment was identical across soils. We hypothesized that soil with a 5-year warming history in the field would enhance the performance of temperate plant species more than boreal plant species and expected improved plant performances to have positive associations with plant growth-promoting soil biota (microbialfeeding nematodes and arbuscular mycorrhizal fungi). Important Findings Our main hypothesis was partly confirmed as only one temperate species performed better in soil with warming history than in soil with history of ambient temperature. Further, this effect was restricted to the site with higher soil water content in the growing season of the sampling year (prior to soil collection). One of the boreal species performed consistently worse in previously warmed soil, whereas the other species showed neutral responses to soil warming history. We found a positive correlation between the density of microbial-feeding nematodes and the performance of one of the temperate species in previously wetter soils, but this correlation was negative at the site with previously drier soil. We found no significant correlations between the performance of the other temperate species as well as the two boreal species and any of the studied soil biota. Our results indicate that soil warming can modify the relation between certain plant species and microbialfeeding nematodes in given soil edaphic conditions, which might be important for plant performance in the temperate-boreal ecotone. Thakur et al. | Effects of soil warming history 671


Ecography | 2014

Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures

Nicholas A. Fisichelli; Lee E. Frelich; Peter B. Reich


Global Change Biology | 2012

Sapling growth responses to warmer temperatures 'cooled' by browse pressure

Nicholas A. Fisichelli; Lee E. Frelich; Peter B. Reich


Oikos | 2012

Interactive effects of global warming and 'global worming' on the initial establishment of native and exotic herbaceous plant species

Nico Eisenhauer; Nicholas A. Fisichelli; Lee E. Frelich; Peter B. Reich

Collaboration


Dive into the Nicholas A. Fisichelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy J. Symstad

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Miller

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Roy L. Rich

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Karen Rice

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Matthew P. Peters

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge