Roy L. Rich
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roy L. Rich.
Nature | 2016
Peter B. Reich; Kerrie M. Sendall; Artur Stefanski; Xiaorong Wei; Roy L. Rich; Rebecca A. Montgomery
Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Peter B. Reich; Roy L. Rich; Xingjie Lu; Ying Ping Wang; Jacek Oleksyn
Significance How evergreen tree needle longevity varies from south to north in the boreal biome is poorly quantified and therefore ignored in vegetation and earth system models. This is problematic, because needle longevity translates directly into needle turnover rate and profoundly affects carbon cycling in both nature and computer models. Herein we present data for five widespread boreal conifers, including pines and spruces, from >125 sites along a 2,000-km gradient. For each species, individuals in colder, more northern environments had longer needle life span, highlighting its importance to evergreen ecological success. Incorporating biogeography of needle longevity into a global model improved predictions of forest productivity and carbon cycling and identified specific problems for models that ignore such variability. Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions.
Global Change Biology | 2015
Roy L. Rich; Artur Stefanski; Rebecca A. Montgomery; Sarah E. Hobbie; Bruce A. Kimball; Peter B. Reich
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).
Scientific Reports | 2015
Nico Eisenhauer; Artur Stefanski; Nicholas A. Fisichelli; Karen Rice; Roy L. Rich; Peter B. Reich
Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.
Tree Physiology | 2016
Xiaorong Wei; Kerrie M. Sendall; Artur Stefanski; Changming Zhao; Jihua Hou; Roy L. Rich; Rebecca A. Montgomery; Peter B. Reich
Most vascular plants acclimate respiration to changes in ambient temperature, but explicit tests of these responses in field settings are rare, and how acclimation responses vary in space and time is relatively unstudied, hindering our ability to predict respiratory release of carbon under future climatic conditions. We measured temperature response curves of leaf respiration for three deciduous tree species from 2009 to 2012 in a field warming experiment (+3.4 °C above ambient) in both open and understory conditions at two sites in the southern boreal forest in Minnesota, USA. We analyzed the effects of warming on leaf respiration, and how the effects varied among species, times of season (early, middle and late parts of the growing season), sites, habitats (understory, open) and years. We hypothesized that the respiration exponent (Q10) of the short-term temperature response curve and the degree of acclimation would be smaller under conditions where plants were more likely to be substrate limited, such as in the understory or the margins of the growing season. However, in contrast to these predictions, stable Q10 and strong respiratory acclimation were consistently observed. For each species, the Q10 did not vary with experimental warming, nor was its response to warming influenced by time of season, year, site or habitat. Strong leaf respiratory acclimation to warming occurred in each species and was consistent across most sources of variation. Most of the leaf traits studied were not affected by warming, while the Q10-leaf nitrogen and R25-soluble carbohydrate relationships were observed, and shifted with warming, implying that acclimation may be associated with the adjustment in respiratory capacity and its relation to leaf nitrogen and soluble carbohydrate content. Consistent Q10 and acclimation across habitats, sites, times of season and years suggest that modeling of temperature acclimation may be possible with relatively simple functions.
Journal of Plant Ecology-uk | 2016
Madhav P. Thakur; Peter B. Reich; Cameron Wagg; Nicholas A. Fisichelli; Marcel Ciobanu; Sarah E. Hobbie; Roy L. Rich; Artur Stefanski; Nico Eisenhauer
Aims Climate warming raises the probability of range expansions of warmadapted temperate species into areas currently dominated by coldadapted boreal species. Warming-induced plant range expansions could partly depend on how warming modifies relationships with soil biota that promote plant growth, such as by mineralizing nutrients. Here, we grew two pairs of congeneric herbaceous plants species together in soil with a 5-year warming history (ambient, +1.7°C, +3.4°C) and related their performances to plant-beneficial soil biota. Methods Each plant pair belonged to either the mid-latitude temperate climate or the higher latitude southern boreal climate. Warmed soils were extracted from a chamberless heating experiment at two field sites in the temperate-boreal ecotone of North America. To isolate potential effects of different soil warming histories, air temperature for the greenhouse experiment was identical across soils. We hypothesized that soil with a 5-year warming history in the field would enhance the performance of temperate plant species more than boreal plant species and expected improved plant performances to have positive associations with plant growth-promoting soil biota (microbialfeeding nematodes and arbuscular mycorrhizal fungi). Important Findings Our main hypothesis was partly confirmed as only one temperate species performed better in soil with warming history than in soil with history of ambient temperature. Further, this effect was restricted to the site with higher soil water content in the growing season of the sampling year (prior to soil collection). One of the boreal species performed consistently worse in previously warmed soil, whereas the other species showed neutral responses to soil warming history. We found a positive correlation between the density of microbial-feeding nematodes and the performance of one of the temperate species in previously wetter soils, but this correlation was negative at the site with previously drier soil. We found no significant correlations between the performance of the other temperate species as well as the two boreal species and any of the studied soil biota. Our results indicate that soil warming can modify the relation between certain plant species and microbialfeeding nematodes in given soil edaphic conditions, which might be important for plant performance in the temperate-boreal ecotone. Thakur et al. | Effects of soil warming history 671
Nature | 2018
Peter B. Reich; Kerrie M. Sendall; Artur Stefanski; Roy L. Rich; Sarah E. Hobbie; Rebecca A. Montgomery
Climate warming will influence photosynthesis via thermal effects and by altering soil moisture1–11. Both effects may be important for the vast areas of global forests that fluctuate between periods when cool temperatures limit photosynthesis and periods when soil moisture may be limiting to carbon gain4–6,9–11. Here we show that the effects of climate warming flip from positive to negative as southern boreal forests transition from rainy to modestly dry periods during the growing season. In a three-year open-air warming experiment with juveniles of 11 temperate and boreal tree species, an increase of 3.4 °C in temperature increased light-saturated net photosynthesis and leaf diffusive conductance on average on the one-third of days with the wettest soils. In all 11 species, leaf diffusive conductance and, as a result, light-saturated net photosynthesis decreased during dry spells, and did so more sharply in warmed plants than in plants at ambient temperatures. Consequently, across the 11 species, warming reduced light-saturated net photosynthesis on the two-thirds of days with driest soils. Thus, low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.Low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.
American Journal of Botany | 2018
Karen Rice; Rebecca A. Montgomery; Artur Stefanski; Roy L. Rich; Peter B. Reich
PREMISE OF THE STUDY Changes to plant phenology have been linked to warmer temperatures caused by climate change. Despite the importance of the groundlayer to community and forest dynamics, few warming experiments have focused on herbaceous plant and shrub phenology. METHODS Using a field study in Minnesota, United States, we investigated phenological responses of 16 species to warming over five growing seasons (2009-2013) at two sites, under two canopy covers, and in three levels of simultaneous above- and belowground warming: ambient temperature, ambient +1.7°C and ambient +3.4°C. We tested whether warming led to earlier phenology throughout the growing season and whether responses varied among species and years and depended on canopy cover. KEY RESULTS Warming extended the growing season between 11-30 days, primarily through earlier leaf unfolding. Leaf senescence was delayed for about half of the species. Warming advanced flowering across species, especially those flowering in August, with modest impacts on fruit maturation for two species. Importantly, warming caused more than half of the species to either converge or diverge phenologically in relation to each other, suggesting that future warmed climate conditions will alter phenological relationships of the groundlayer. Warm springs elicited a stronger advance of leaf unfolding compared to cool spring years. Several species advanced leaf unfolding (in response to warming) more in the closed canopy compared to the open. CONCLUSIONS Climate warming will extend the growing season of groundlayer species in the boreal-temperate forest ecotone and alter the synchrony of their phenology.
Nature Climate Change | 2017
Benjamin Schwarz; Andrew David Barnes; Madhav P. Thakur; Ulrich Brose; Marcel Ciobanu; Peter B. Reich; Roy L. Rich; Benjamin Rosenbaum; Artur Stefanski; Nico Eisenhauer
Climate warming is predicted to alter the structure, stability, and functioning of food webs1–5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal–temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (−40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal–temperate ecotonal forests.Warming interacts with forest disturbance and drought to shape the energetic structure of soil food webs; these changes can undermine the provision of multiple ecosystem functions in transitional boreal–temperate forests.
Journal of Ecology | 2007
Roy L. Rich; Lee E. Frelich; Peter B. Reich