Nicholas P. Hylton
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas P. Hylton.
Optics Express | 2011
Xiaofeng Li; Nicholas P. Hylton; Vincenzo Giannini; Kan-Hua Lee; N.J. Ekins-Daukes; Stefan A. Maier
We report three-dimensional modelling of plasmonic solar cells in which electromagnetic simulation is directly linked to carrier transport calculations. To date, descriptions of plasmonic solar cells have only involved electromagnetic modelling without realistic assumptions about carrier transport, and we found that this leads to considerable discrepancies in behaviour particularly for devices based on materials with low carrier mobility. Enhanced light absorption and improved electronic response arising from plasmonic nanoparticle arrays on the solar cell surface are observed, in good agreement with previous experiments. The complete three-dimensional modelling provides a means to design plasmonic solar cells accurately with a thorough understanding of the plasmonic interaction with a photovoltaic device.
Scientific Reports | 2013
Nicholas P. Hylton; Xiaofeng Li; Vincenzo Giannini; Kan-Hua Lee; Nicholas J. Ekins-Daukes; Josine Loo; Dries Vercruysse; P. Van Dorpe; Hassanet Sodabanlu; Masakazu Sugiyama; Stefan A. Maier
We illustrate the important trade-off between far-field scattering effects, which have the potential to provide increased optical path length over broad bands, and parasitic absorption due to the excitation of localized surface plasmon resonances in metal nanoparticle arrays. Via detailed comparison of photocurrent enhancements given by Au, Ag and Al nanostructures on thin-film GaAs devices we reveal that parasitic losses can be mitigated through a careful choice of scattering medium. Absorption at the plasmon resonance in Au and Ag structures occurs in the visible spectrum, impairing device performance. In contrast, exploiting Al nanoparticle arrays results in a blue shift of the resonance, enabling the first demonstration of truly broadband plasmon enhanced photocurrent and a 22% integrated efficiency enhancement.
Semiconductor Science and Technology | 2015
Tomos Thomas; Alexander Mellor; Nicholas P. Hylton; M Fuehrer; Diego Alonso-Álvarez; Avi Braun; Nicholas J. Ekins-Daukes; J.P.R. David; S. J. Sweeney
Multi-junction solar cells achieve high efficiency by stacking sub-cells of different bandgaps (typically GaInP/GaAs/Ge) resulting in efficiencies in excess of 40%. The efficiency can be improved by introducing a 1 eV absorber into the stack, either replacing Ge in a triple-junction configuration or on top of Ge in a quad-junction configuration. GaAs0.94Bi0.06 yields a direct-gap at 1 eV with only 0.7% strain on GaAs and the feasibility of the material has been demonstrated from GaAsBi photodetector devices. The relatively high absorption coefficient of GaAsBi suggests sufficient current can be generated to match the sub-cell photocurrent from the other sub-cells of a standard multi-junction solar cell. However, minority carrier transport and background doping levels place constraints on both p/n and p-i-n diode configurations. In the possible case of short minority carrier diffusion lengths we recommend the use of a p-i-n diode, and predict the material parameters that are necessary to achieve high efficiencies in a GaInP/GaAs/GaAsBi/Ge quad-junction cell.
Applied Physics Letters | 2014
Diego Alonso-Álvarez; Tomos Thomas; Markus Führer; Nicholas P. Hylton; Nicholas J. Ekins-Daukes; David Lackner; Simon P. Philipps; Andreas W. Bett; Hassanet Sodabanlu; Hiromasa Fujii; K. Watanabe; Masakazu Sugiyama; L. Nasi; M. Campanini
Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetim...
Journal of Applied Physics | 2007
Darren M. Graham; P. Dawson; G. R. Chabrol; Nicholas P. Hylton; D. Zhu; M. J. Kappers; C. McAleese; Colin J. Humphreys
In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N∕Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5nm, a photoluminescence internal efficiency of 67% for peak emission at 382nm at room temperature.
IEEE Journal of Photovoltaics | 2016
Oliver J. Curtin; Megumi Yoshida; Andreas Pusch; Nicholas P. Hylton; N.J. Ekins-Daukes; C. C. Phillips; Ortwin Hess
We propose an antimonide-based quantum cascade design to demonstrate the ratchet mechanism for incorporation into the recently suggested photon ratchet intermediate-band solar cell. We realize the photon ratchet as a semiconductor heterostructure in which electrons are optically excited into an intermediate band and spatially decoupled from the valence band through a type-II quantum cascade. This process reduces both radiative and nonradiative recombination and can thereby increase the solar cell efficiency over intermediate-band solar cells. Our design method uses an adaptive simulated annealing genetic algorithm to determine the optimum thicknesses of semiconductor layers in the quantum cascade, allowing efficient transport (via phonon emission) of the electrons away from the interband active region.
IEEE Journal of Photovoltaics | 2016
Alexander Mellor; Nicholas P. Hylton; Hubert Hauser; Tomos Thomas; Kan-Hua Lee; Y. Al-Saleh; Vincenzo Giannini; Avi Braun; Josine Loo; Dries Vercruysse; Pol Van Dorpe; Benedikt Bläsi; Stefan A. Maier; Nicholas J. Ekins-Daukes
This paper contains a combined experimental and simulation study of the effect of Al and AlInP nanoparticles on the performance of multijunction (MJ) solar cells. In particular, we investigate oblique photon scattering by the nanoparticle arrays as a means of improving thinned subcells or those with low diffusion lengths, either inherently or due to radiation damage. Experimental results show the feasibility of integrating nanoparticle arrays into the antireflection coatings of commercial InGaP/InGaAs/Ge solar cells, and computational results show that nanoparticle arrays can improve the internal quantum efficiency via optical path length enhancement. However, a design that improves the external quantum efficiency of a state-of-the-art cell has not been found, despite the large parameter space studied. We show a clear tradeoff between oblique scattering and transmission loss and present design principles and insights into how improvements can be made.
photovoltaic specialists conference | 2016
Robert D. Richards; Faezah Harun; Jeng Shiuh Cheong; Alexander Mellor; Nicholas P. Hylton; Tom Wilson; Tomos Thomas; Nicholas J. Ekins-Daukes; J. P. R. David
A series of GaAsBi/GaAs multiple quantum well p-i-n diodes are characterized using IV, photocurrent and illuminated IV measurements. The results are compared to an InGaAs/GaAsP multiple quantum well control device of a design that has demonstrated excellent performance in triple junction photovoltaics. The extended absorption of the GaAsBi/GaAs devices, compared to that of the InGaAs/GaAsP device, suggests that GaAsBi/GaAs could present a viable alternative to InGaAs/GaAsP for quad junction photovoltaics.
photovoltaic specialists conference | 2015
Alexander Mellor; Nicholas P. Hylton; F. Shirley; Tomos Thomas; Kan-Hua Lee; Y. Al-Saleh; Avi Braun; Josine Loo; Dries Vercruysse; Pol Van Dorpe; Stefan A. Maier; N.J. Ekins-Daukes
We investigate how an array of nanoparticles embedded in the anti-reflection coating can improve the radiation hardness of multi-junction space solar cells. In space, high-energy electron and proton radiation reduces solar cell efficiency. Most notably, the InGaAs-middle-cell diffusion lengths are degraded, reducing photocurrent. Metal nanoparticles can scatter incident photons obliquely into the semiconductor, reducing their penetration depths and hence causing charge carriers to be photogenerated closer to the junctions. We postulate that this can improve radiation hardness by improving carrier collection at end of life. In this work, GaInP/InGaAs/Ge solar cells with optimised double-layer AlOx/TiOx ARCs were fabricated with regular arrays of Al nanoparticles deposited on top. An electro-optical simulation tool was also developed, and validated by comparison to the measured quantum efficiency and reflectance spectra, with good agreement. Using the validated simulation tool, we predict the photocurrent before and after high energy electron irradiation. The fraction of the initial photocurrent remaining after irradiation is predicted to improve for certain nanoparticle arrays. However, the overall photocurrent both before and after irradiation is reduced by the presence of the particles. Hence a net benefit is not predicted for the studied array dimensions.
Silicon Photonics V: Proceedings of the Society of Photo-optical Instrumentation Engineers | 2010
Iain F. Crowe; O. Hulko; Andrew P. Knights; Nicholas P. Hylton; M. P. Halsall; Simon Ruffell; R. Gwilliam
We present a combined analysis using cross-sectional transmission electron microscopy (X-TEM) and Raman spectroscopy to study the early formation dynamics of Si-nanocrystals, formed in SiO2 thin films after Si+ implantation and rapid thermal processing (RTP). We obtained values for the diffusion coefficient of Si in thermally grown SiO2 and the activation energy to precipitate formation in the first 100 seconds of high temperature annealing. These values indicate that the formation of Si-nanocrystals in implanted oxides proceeds much more efficiently than purely via a self diffusion process. We propose that the nanocrystal formation is assisted by the presence of both oxygen vacancies and SiO molecular species, presumably generated by the ion irradiation. Microscopy images reveal the ensemble nanocrystal population to be most accurately represented by a lognormal distribution function with characteristic values for the mean particle diameter, d and variance, σ. The evolution of the silicon nanocrystals with annealing was also investigated by measuring the Raman scattering signal associated with the TO phonon mode arising from Si-Si bonds in Si-rich oxides grown on transparent (Al2O3) substrates. This greatly simplifies the experimental observation of the Raman spectra from Si-nanocrystals as compared to previous studies of nanocrystals in oxide films on silicon substrates.