Nicola Antonucci
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Antonucci.
Journal of Autism and Developmental Disorders | 2012
Dario Siniscalco; Anna Sapone; Catia Giordano; Alessandra Cirillo; Vito de Novellis; Laura de Magistris; Francesco Rossi; Alessio Fasano; Sabatino Maione; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and neurons, autistic children also show an altered immune response of peripheral blood mononuclear cells (PBMCs). In this study, we investigated the activation of caspases, cysteinyl aspartate-specific proteases involved in apoptosis and several other cell functions in PBMCs from 15 ASD children compared to age-matched normal healthy developing controls. The mRNA levels for caspase-1, -2, -4, -5 were significantly increased in ASD children as compared to healthy subjects. Protein levels of Caspase-3, -7, -12 were also increased in ASD patients. Our data are suggestive of a possible role of the capsase pathway in ASD clinical outcome and of the use of caspase as potential diagnostic and/or therapeutic tools in ASD management.
International Journal of Environmental Research and Public Health | 2013
Dario Siniscalco; Alessandra Cirillo; James Jeffrey Bradstreet; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
BioMed Research International | 2012
Dario Siniscalco; Anna Sapone; Alessandra Cirillo; Catia Giordano; Sabatino Maione; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs) show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.
Journal of Neuroinflammation | 2014
Dario Siniscalco; James Jeffrey Bradstreet; Alessandra Cirillo; Nicola Antonucci
BackgroundImmune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls.MethodsTo achieve these goals, we used biomolecular, biochemical and immunocytochemical methods.ResultsGcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children.ConclusionsThis study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.
Cell Transplantation | 2014
James Jeffrey Bradstreet; Nataliia Sych; Nicola Antonucci; Mariya Klunnik; Olena Ivankova; Irina Matyashchuk; Mariya Demchuk; Dario Siniscalco
Autism spectrum disorders (ASDs) are heterogeneous complex neurodevelopmental pathologies defined by behavioral symptoms, but which have well-characterized genetic, immunological, and physiological comorbidities. Despite extensive research efforts, there are presently no agreed upon therapeutic approaches for either the core behaviors or the associated comorbidities. In particular, the known autoimmune disorders associated with autism are appealing targets for potential stem cell therapeutics. Of the various stem cell populations, fetal stem cells (FSCs) offer the potent immunoregulatory functions found in primordial mesenchymal stem cells, while exhibiting rapid expansion capacity and recognized plasticity. These properties enhance their potential for clinical use. Furthermore, FSCs are potent and implantable “biopharmacies” capable of delivering trophic signals to the host, which could influence brain development. This study investigated the safety and efficacy of FSC transplantations in treating children diagnosed with ASDs. Subjects were monitored at pre, and then 6 and 12 months following the transplantations, which consisted of two doses of intravenously and subcutaneously administered FSCs. The Autism Treatment Evaluation Checklist (ATEC) test and Aberrant Behavior Checklist (ABC) scores were performed. Laboratory examinations and clinical assessment of adverse effects were performed in order to evaluate treatment safety. No adverse events of significance were observed in ASD children treated with FSCs, including no transmitted infections or immunological complications. Statistically significant differences (p < 0.05) were shown on ATEC/ABC scores for the domains of speech, sociability, sensory, and overall health, as well as reductions in the total scores when compared to pretreatment values. We recognize that the use of FSCs remains controversial for the present. The results of this study, however, warrant additional investigations into the mechanisms of cell therapies for ASDs, while prompting the exploration of FSCs as “biopharmacies” capable of manufacturing the full array of cell-signaling chemistry. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Frontiers in Immunology | 2013
Dario Siniscalco; James Jeffrey Bradstreet; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders.
Medical Hypotheses | 2013
Dario Siniscalco; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental pathologies. The main core symptoms are: dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviors. Several biochemical processes are associated with ASDs: oxidative stress; endoplasmic reticulum stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal dysbiosis; increased toxic metal burden; immune dysregulation. Current available treatments for ASDs can be divided into behavioral, nutritional and medical approaches, although no defined standard approach exists. Current drugs fail to benefit the ASD core symptoms and can have marked adverse effects, are mainly palliative and only sometimes efficacy in attenuating specific autistic behaviors. Helminthic therapy shows potential for application as anti-inflammatory agent. Several human diseases can be treated by helminths (i.e. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes). Trichuris suis ova (TSO) show strong immunomodulatory properties. Authors hypothesize that TSO could be useful in addressing ASD immune dysregulations. TSO could be a novel therapeutic option for ASD management.
World Journal of Stem Cells | 2014
Dario Siniscalco; James Jeffrey Bradstreet; Nataliia Sych; Nicola Antonucci
Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs concern the cognitive, emotional, and neurobehavioural domains. The prevalence of autism appears to be increasing at an alarming rate, yet there is a lack of effective and definitive pharmacological options. This has created an increased sense of urgency, and the need to identify novel therapies. Given the growing awareness of immune dysregulation in a significant portion of the autistic population, cell therapies have been proposed and applied to ASDs. In particular, mesenchymal stem cells (MSCs) possess the immunological properties which make them promising candidates in regenerative medicine. MSC therapy may be applicable to several diseases associated with inflammation and tissue damage, where subsequent regeneration and repair is necessary. MSCs could exert a positive effect in ASDs through the following mechanisms: stimulation of repair in the damaged tissue, e.g., inflammatory bowel disease; synthesizing and releasing anti-inflammatory cytokines and survival-promoting growth factors; integrating into existing neural and synaptic network, and restoring plasticity. The paracrine mechanisms of MSCs show interesting potential in ASD treatment. Promising and impressive results have been reported from the few clinical studies published to date, although the exact mechanisms of action of MSCs in ASDs to restore functions are still largely unknown. The potential role of MSCs in mediating ASD recovery is discussed in light of the newest findings from recent clinical studies.
Stem Cells International | 2013
Dario Siniscalco; James Jeffrey Bradstreet; Nataliia Sych; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Current Protein & Peptide Science | 2013
Dario Siniscalco; Nicola Antonucci
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental pathologies. These enigmatic conditions have their origins in the interaction of multiple genes and environmental factors. Dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviours are the main core symptoms. Several biochemical processes are associated with ASDs: oxidative stress; endoplasmic reticulum stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal impaired permeability and dysbiosis; increased toxic metal burden; immune dysregulation. Current available treatments for ASDs can be divided into behavioural, nutritional and medical approaches, although no defined standard approach exists. Dietary bioactive proteins and peptides show potential for application as health-promoting agents. Nowadays, increasing studies highlight a key role of bioactive proteins and peptides in ASDs. This review will focus on the state-of-the-art regarding the involvement of dietary bioactive proteins and peptides in ASDs. Identification of novel therapeutic targets for ASD management will be also discussed.