Nicola J. Broadbent
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola J. Broadbent.
Learning & Memory | 2009
Sebastian Jessberger; Robert E. Clark; Nicola J. Broadbent; Gregory D. Clemenson; Antonella Consiglio; D. Chichung Lie; Larry R. Squire; Fred H. Gage
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.
Learning & Memory | 2010
Nicola J. Broadbent; Stephane Gaskin; Larry R. Squire; Robert E. Clark
In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR task. Rats received 12 5-min exposures to two identical objects and then received either bilateral lesions of the hippocampus or sham surgery 1 d, 4 wk, or 8 wk after the final exposure. On a retention test 2 wk after surgery, the 1-d and 4-wk hippocampal lesion groups exhibited impaired object recognition memory. In contrast, the 8-wk hippocampal lesion group performed similarly to controls, and both groups exhibited a preference for the novel object. These same rats were then given four postoperative tests using unique object pairs and a 3-h delay between the exposure phase and the test phase. Hippocampal lesions produced moderate and reliable memory impairment. The results suggest that the hippocampus is important for object recognition memory.
The Journal of Neuroscience | 2007
Robert E. Clark; Nicola J. Broadbent; Larry R. Squire
For many tasks and species, remote memory (but not recent memory) is spared after damage to the hippocampus. An exception to this pattern of findings has been that both recent and remote memory are impaired after hippocampal lesions when rats are trained in the conventional water maze task. We explored the effect of introducing a navigational beacon for rats to use during testing. Four identical beacons were hung directly over each of the water maze quadrants, equidistant from each other (multiple-beacon maze). One of the beacons was always directly over the hidden platform. By using distal spatial cues, rats could select the correct beacon and use that beacon as a guide to the hidden platform. Probe tests indicated that rats did use the beacons to guide performance throughout training. Two months after the completion of training, rats were given hippocampal or sham lesions. Controls performed well, but the lesion group performed at chance on the retention probe trials. Furthermore, the rats with lesions not only searched indiscriminately in all four quadrants, they also did not use the beacons. These results indicate that impaired performance in the water maze after hippocampal damage reflects more than a loss of spatial information.
Neuron | 2011
Robert E. Clark; Pamela Reinagel; Nicola J. Broadbent; Erik D. Flister; Larry R. Squire
We developed a behavioral paradigm for the rat that made it possible to separate the evaluation of memory functions from the evaluation of perceptual functions. Animals were given extensive training on an automated two-choice discrimination task and then maintained their memory performance at a high level while interpolated probe trials tested visual perceptual ability. The probe trials systematically varied the degree of feature ambiguity between the stimuli, such that perceptual functions could be tested across 14 different levels of difficulty. As feature ambiguity increased, performance declined in an orderly, monotonic manner (from 87% correct to chance, 50% correct). Bilateral lesions of the perirhinal cortex fully spared the capacity to make feature-ambiguous discriminations and the performance of lesioned and intact animals was indistinguishable at every difficulty level. In contrast, the perirhinal lesions did impair recognition memory. The findings suggest that the perirhinal cortex is important for memory and not for perceptual functions.
Neurobiology of Learning and Memory | 2013
Nicola J. Broadbent; Robert E. Clark
Systems consolidation involves the reorganization of brain circuits that support long-term memory. It is a prolonged process that can take days, weeks, or longer. An animal model of systems consolidation was established in the early 1990s and provided compelling support for the initial observations in humans, that hippocampal damage disproportionally impairs recent memory compared to remote memory. Context fear conditioning was the most frequently and successfully used task to study systems consolidation and demonstrate temporally graded retrograde amnesia. However, recent studies have failed to support these early findings of temporal gradients and instead reported that both recent and remote memories are equally impaired. Thus, the status of context fear conditioning as method to study the process of systems consolidation is at present uncertain. Accordingly, we evaluated classically conditioned fear memory in large groups of rats with hippocampal damage by manipulating several procedural variables including the training protocol, the training-surgery interval, the extent of hippocampal damage, and the method of damaging the hippocampus. The results indicate that hippocampal damage profoundly impairs context fear conditioning. These findings are unambiguous and independent of any particular procedural manipulation we evaluated. We suggest that the preponderance of currently available evidence indicates that context fear memory remains hippocampus-dependent indefinitely.
Hippocampus | 2010
Nicola J. Broadbent; Larry R. Squire; Robert E. Clark
Memories are initially stored in a labile state and are subject to modification by a variety of treatments, including disruption of hippocampal function. We infused a sodium channel blocker (or CNQX) to inactivate the rat dorsal hippocampus reversibly for 1 week following training on a task of spatial memory (the water maze). Previous work with conventional lesions has established that the dorsal hippocampus is essential for both the acquisition and expression of memory in this task. The question in the present study was whether chronic disruption of neuronal activity in the dorsal hippocampus after training would abolish memory or whether memory would survive extended disruption of hippocampal activity. As expected from earlier work, we found that performance was impaired during the infusion period. The critical test occurred 1 week after the lesion was reversed. We found that retention of the water maze recovered to control levels. Accordingly, sustained hippocampal activity following training is not obligatory for either the maintenance of long‐term spatial memory or its subsequent retrieval.
Learning & Memory | 2015
Jena B. Hales; Nicola J. Broadbent; Priya D. Velu; Larry R. Squire; Robert E. Clark
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory.
Neural Plasticity | 2015
Jena B. Hales; Amber C. Ocampo; Nicola J. Broadbent; Robert E. Clark
Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.
Neurobiology of Learning and Memory | 2016
Jena B. Hales; Amber C. Ocampo; Nicola J. Broadbent; Robert E. Clark
Whether or not spatial memories reorganize in the rodent brain is an unanswered question that carries the importance of whether the rodent provides a suitable animal model of human retrograde amnesia. The finding of equally impaired recent and remote spatial memory could reflect the continued importance of the hippocampus for spatial memory or a performance deficit (for example, hippocampal lesions may impair the rats ability to use distal spatial cues to navigate to a specific point in space). In the current study, we tested recent and remote spatial memory in rats following hippocampal ZIP (zeta-pseudosubstrate inhibitory peptide) infusion to inhibit PKMzeta. Hippocampal ZIP infusion has previously been shown to impair spatial and nonspatial memory soon after learning, presumably by reversing late-phase long-term potentiation, allowing us to disrupt memory without damaging hippocampal tissue. We used a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus following spatial memory training. Although rats showed intact memory retrieval on the standard Morris watermaze task and trace fear conditioning, rats infused with ZIP 24h after training on the annular watermaze task exhibited impaired spatial memory compared to control rats (those infused with aCSF) and performed no different than chance. In contrast, rats infused with ZIP 1month after training performed similar to control rats and both groups performed above chance. Additionally, the ability to form new memories after ZIP infusions remained intact. Thus, ZIP infusions into the hippocampus after learning impaired retrieval of recently formed spatial memories while sparing remote spatial memories.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Nicola J. Broadbent; Larry R. Squire; Robert E. Clark