Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Ternette is active.

Publication


Featured researches published by Nicola Ternette.


Cancer Cell | 2011

Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling

Julie Adam; Emine Hatipoglu; Linda O'Flaherty; Nicola Ternette; Natasha Sahgal; Helen Lockstone; Dilair Baban; Emma Nye; Gordon Stamp; Kathryn Wolhuter; Marcus Stevens; R. Fischer; Peter Carmeliet; Patrick H. Maxwell; Christopher W. Pugh; Norma Frizzell; Tomoyoshi Soga; Benedikt M. Kessler; Mona El-Bahrawy; Peter J. Ratcliffe; Patrick J. Pollard

Summary The Krebs cycle enzyme fumarate hydratase (FH) is a human tumor suppressor whose inactivation is associated with the development of leiomyomata, renal cysts, and tumors. It has been proposed that activation of hypoxia inducible factor (HIF) by fumarate-mediated inhibition of HIF prolyl hydroxylases drives oncogenesis. Using a mouse model, we provide genetic evidence that Fh1-associated cyst formation is Hif independent, as is striking upregulation of antioxidant signaling pathways revealed by gene expression profiling. Mechanistic analysis revealed that fumarate modifies cysteine residues within the Kelch-like ECH-associated protein 1 (KEAP1), abrogating its ability to repress the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response pathway, suggesting a role for Nrf2 dysregulation in FH-associated cysts and tumors.


The Journal of Pathology | 2011

Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status

Chiara Bardella; Mona El-Bahrawy; Norma Frizzell; Julie Adam; Nicola Ternette; Emine Hatipoglu; Kimberley Howarth; Linda O'Flaherty; Ian S. Roberts; Gareth D. H. Turner; Jennifer M. Taylor; Konstantinos Giaslakiotis; Valentine M. Macaulay; Adrian L. Harris; Ashish Chandra; Heli J. Lehtonen; Virpi Launonen; Lauri A. Aaltonen; Christopher W. Pugh; Radu Mihai; David C. Trudgian; Benedikt M. Kessler; John W. Baynes; Peter J. Ratcliffe; Ian Tomlinson; Patrick J. Pollard

Germline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH‐deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S‐(2‐succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC. Herein, using a previously characterized antibody against 2SC, we show that genetic ablation of FH causes high levels of protein succination. We next hypothesized that immunohistochemistry for 2SC would serve as a metabolic biomarker for the in situ detection of FH‐deficient tissues. Robust detection of 2SC was observed in Fh1 (murine FH)‐deficient renal cysts and in a retrospective series of HLRCC tumours (n = 16) with established FH mutations. Importantly, 2SC was undetectable in normal tissues (n = 200) and tumour types not associated with HLRCC (n = 1342). In a prospective evaluation of cases referred for genetic testing for HLRCC, the presence of 2SC‐modified proteins (2SCP) correctly predicted genetic alterations in FH in every case. In two series of unselected type II papillary renal cancer (PRCC), prospectively analysed by 2SCP staining followed by genetic analysis, the biomarker accurately identified previously unsuspected FH mutations (2/33 and 1/36). The investigation of whether metabolites in other tumour types produce protein modification signature(s) that can be assayed using similar strategies will be of interest in future studies of cancer. Copyright


Proteomics | 2011

Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline

David C. Trudgian; Gabriela Ridlova; R. Fischer; Mukram Mohamed Mackeen; Nicola Ternette; Oreste Acuto; Benedikt M. Kessler; Benjamin Thomas

Normalized spectral index quantification was recently presented as an accurate method of label‐free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance. We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP). We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium‐complexity sample. In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre‐fractionation produces accurate results at amounts above 1 fmol on column. We compare quantitation performance to various precursor intensity‐ and identification‐based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC‐MS. We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows. SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open‐source license.


Molecular Cell | 2012

ATM-Dependent Downregulation of USP7/HAUSP by PPM1G Activates p53 Response to DNA Damage

Svetlana V. Khoronenkova; Irina I. Dianova; Nicola Ternette; Benedikt M. Kessler; Jason L. Parsons; Grigory L. Dianov

Summary The deubiquitylation enzyme USP7/HAUSP plays a major role in regulating genome stability and cancer prevention by controlling the key proteins involved in the DNA damage response. Despite this important role in controlling other proteins, USP7 itself has not been recognized as a target for regulation. Here, we report that USP7 regulation plays a central role in DNA damage signal transmission. We find that stabilization of Mdm2, and correspondingly p53 downregulation in unstressed cells, is accomplished by a specific isoform of USP7 (USP7S), which is phosphorylated at serine 18 by the protein kinase CK2. Phosphorylation stabilizes USP7S and thus contributes to Mdm2 stabilization and downregulation of p53. After ionizing radiation, dephosphorylation of USP7S by the ATM-dependent protein phosphatase PPM1G leads to USP7S downregulation, followed by Mdm2 downregulation and accumulation of p53. Our findings provide a quantitative transmission mechanism of the DNA damage signal to coordinate a p53-dependent DNA damage response.


Cell Reports | 2013

Inhibition of Mitochondrial Aconitase by Succination in Fumarate Hydratase Deficiency

Nicola Ternette; Ming Yang; Mahima Laroyia; Mitsuhiro Kitagawa; Linda O’Flaherty; Kathryn Wolhulter; Kaori Igarashi; Kaori Saito; Keiko Kato; R. Fischer; Alexandre Berquand; Benedikt M. Kessler; Terry Lappin; Norma Frizzell; Tomoyoshi Soga; Julie Adam; Patrick J. Pollard

Summary The gene encoding the Krebs cycle enzyme fumarate hydratase (FH) is mutated in hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity causes accumulation of intracellular fumarate, which can directly modify cysteine residues to form 2-succinocysteine through succination. We undertook a proteomic-based screen in cells and renal cysts from Fh1 (murine FH)-deficient mice and identified 94 protein succination targets. Notably, we identified the succination of three cysteine residues in mitochondrial Aconitase2 (ACO2) crucial for iron-sulfur cluster binding. We show that fumarate exerts a dose-dependent inhibition of ACO2 activity, which correlates with increased succination as determined by mass spectrometry, possibly by interfering with iron chelation. Importantly, we show that aconitase activity is impaired in FH-deficient cells. Our data provide evidence that succination, resulting from FH deficiency, targets and potentially alters the function of multiple proteins and may contribute to the dysregulated metabolism observed in HLRCC.


eLife | 2015

An open-source computational and data resource to analyze digital maps of immunopeptidomes.

Etienne Caron; Lucia Espona; Daniel J. Kowalewski; Heiko Schuster; Nicola Ternette; Adán Alpízar; Ralf B. Schittenhelm; Sri H. Ramarathinam; Cecilia S. Lindestam Arlehamn; Ching Chiek Koh; Ludovic C. Gillet; Armin Rabsteyn; Pedro Navarro; Sangtae Kim; Henry H N Lam; Theo Sturm; Alessandro Sette; David S. Campbell; Eric W. Deutsch; Robert L. Moritz; Anthony W. Purcell; Hans-Georg Rammensee; Stefan Stevanovic; Ruedi Aebersold

We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001


Journal of Virology | 2009

Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus

Rebekka Kohlmann; Sarah Schwannecke; Bettina Tippler; Nicola Ternette; Vladimir Temchura; Matthias Tenbusch; Klaus Überla; Thomas Grunwald

ABSTRACT Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.


Arthritis & Rheumatism | 2014

Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27.

Liye Chen; R. Fischer; Yanchun Peng; Emma Reeves; Kirsty McHugh; Nicola Ternette; Tomáš Hanke; Tao Dong; Tim Elliott; Nilabh Shastri; Simon Kollnberger; Edward James; Benedikt M. Kessler; Paul Bowness

HLA–B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are the two strongest genetic factors predisposing to ankylosing spondylitis (AS). A key aminopeptidase in class I major histocompatibility complex presentation, ERAP1 potentially contributes to the pathogenesis of AS by altering HLA–B27 peptide presentation. The aim of this study was to analyze the effects of ERAP1 on the HLA–B27 peptide repertoire and peptide presentation to cytotoxic T lymphocytes (CTLs).


Journal of Biological Chemistry | 2011

E3 Ligases Determine Ubiquitination Site and Conjugate Type by Enforcing Specificity on E2 Enzymes

Yael David; Nicola Ternette; Mariola J. Edelmann; Tamar Ziv; Batya Gayer; Rotem Sertchook; Yakir Dadon; Benedikt M. Kessler; Ami Navon

Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification.


Nucleic Acids Research | 2012

Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability

Cornelia Meisenberg; Phillip S. Tait; Irina I. Dianova; Katherine Wright; Mariola J. Edelmann; Nicola Ternette; Takafumi Tasaki; Benedikt M. Kessler; Jason L. Parsons; Yong Tae Kwon; Grigory L. Dianov

APE1 (Ref-1) is an essential human protein involved in DNA damage repair and regulation of transcription. Although the cellular functions and biochemical properties of APE1 are well characterized, the mechanism involved in regulation of the cellular levels of this important DNA repair/transcriptional regulation enzyme, remains poorly understood. Using an in vitro ubiquitylation assay, we have now purified the human E3 ubiquitin ligase UBR3 as a major activity that polyubiquitylates APE1 at multiple lysine residues clustered on the N-terminal tail. We further show that a knockout of the Ubr3 gene in mouse embryonic fibroblasts leads to an up-regulation of the cellular levels of APE1 protein and subsequent genomic instability. These data propose an important role for UBR3 in the control of the steady state levels of APE1 and consequently error free DNA repair.

Collaboration


Dive into the Nicola Ternette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norma Frizzell

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Morten Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge