Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Tolliday is active.

Publication


Featured researches published by Nicola Tolliday.


Nature | 2011

Selective killing of cancer cells by a small molecule targeting the stress response to ROS

Lakshmi Raj; Takao Ide; Aditi U. Gurkar; Michael Foley; Monica Schenone; Xiaoyu Li; Nicola Tolliday; Todd R. Golub; Steven A. Carr; Alykhan F. Shamji; Anna Mandinova; Stuart L. Schreiber; Sam W. Lee

Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.


Nucleic Acids Research | 2007

ChemBank: a small-molecule screening and cheminformatics resource database

Kathleen Petri Seiler; Gregory George; Mary Pat Happ; Nicole E. Bodycombe; Hyman A. Carrinski; Stephanie Norton; Steve Brudz; John P Sullivan; Jeremy L. Muhlich; Martin Serrano; Paul Ferraiolo; Nicola Tolliday; Stuart L. Schreiber; Paul A. Clemons

ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identifying the proteins to which small-molecule probes and drugs bind in cells

Shao-En Ong; Monica Schenone; Adam A. Margolin; Xiaoyu Li; Kathy Do; Mary Kathryn Doud; D. R. Mani; Letian Kuai; Xiang Wang; John L. Wood; Nicola Tolliday; Angela N. Koehler; Lisa A. Marcaurelle; Todd R. Golub; Robert J. Gould; Stuart L. Schreiber; Steven A. Carr

Most small-molecule probes and drugs alter cell circuitry by interacting with 1 or more proteins. A complete understanding of the interacting proteins and their associated protein complexes, whether the compounds are discovered by cell-based phenotypic or target-based screens, is extremely rare. Such a capability is expected to be highly illuminating—providing strong clues to the mechanisms used by small-molecules to achieve their recognized actions and suggesting potential unrecognized actions. We describe a powerful method combining quantitative proteomics (SILAC) with affinity enrichment to provide unbiased, robust and comprehensive identification of the proteins that bind to small-molecule probes and drugs. The method is scalable and general, requiring little optimization across different compound classes, and has already had a transformative effect on our studies of small-molecule probes. Here, we describe in full detail the application of the method to identify targets of kinase inhibitors and immunophilin binders.


Current Biology | 2002

Rho1 Directs Formin-Mediated Actin Ring Assembly during Budding Yeast Cytokinesis

Nicola Tolliday; Lynn VerPlank; Rong Li

In eukaryotic cells, dynamic rearrangement of the actin cytoskeleton is critical for cell division. In the yeast Saccharomyces cerevisiae, three main structures constitute the actin cytoskeleton: cortical actin patches, cytoplasmic actin cables, and the actin-based cytokinetic ring. The conserved Arp2/3 complex and a WASP-family protein mediate actin patch formation, whereas the yeast formins (Bni1 and Bnr1) promote assembly of actin cables. However, the mechanism of actin ring formation is currently unclear. Here, we show that actin filaments are required for cytokinesis in S. cerevisiae, and that the actin ring is a highly dynamic structure that undergoes constant turnover. Assembly of the actin ring requires the formin-like proteins and profilin, but is not Arp2/3-mediated. Furthermore, the formin-dependent actin ring assembly pathway is regulated by the Rho-type GTPase Rho1 but not Cdc42. Finally, we show that the formins are not required for localization of Cyk1/Iqg1, an IQGAP-like protein previously shown to be required for actin ring formation, suggesting that formin-like proteins and Cyk1 act synergistically but independently in assembly of the actin ring.


Molecular Biotechnology | 2009

Cell-Based Assays for High-Throughput Screening

W. Frank An; Nicola Tolliday

Cell-based assays represent approximately half of all high-throughput screens currently performed. Here, we review in brief the history and status of high-throughput screening (HTS), and summarize some of the challenges and benefits associated with the use of cell-based assays in HTS. Approaches for successful experimental design and execution of cell-based screens are introduced, including strategies for assay development, implementation of primary and secondary screens, and target identification. In doing so, we hope to provide a comprehensive review of the cell-based HTS process and an introduction to the methodologies and techniques used.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress

Alice T. Shaw; Monte M. Winslow; Margaret Magendantz; Chensi Ouyang; James Dowdle; Aravind Subramanian; Tim Lewis; Rebecca L. Maglathin; Nicola Tolliday; Tyler Jacks

Activating K-RAS mutations are the most frequent oncogenic mutations in human cancer. Numerous downstream signaling pathways have been shown to be deregulated by oncogenic K-ras. However, to date there are still no effective targeted therapies for this genetically defined subset of patients. Here we report the results of a small molecule, synthetic lethal screen using mouse embryonic fibroblasts derived from a mouse model harboring a conditional oncogenic K-rasG12D allele. Among the >50,000 compounds screened, we identified a class of drugs with selective activity against oncogenic K-ras–expressing cells. The most potent member of this class, lanperisone, acts by inducing nonapoptotic cell death in a cell cycle- and translation-independent manner. The mechanism of cell killing involves the induction of reactive oxygen species that are inefficiently scavenged in K-ras mutant cells, leading to oxidative stress and cell death. In mice, treatment with lanperisone suppresses the growth of K-ras–driven tumors without overt toxicity. Our findings establish the specific antitumor activity of lanperisone and reveal oxidative stress pathways as potential targets in Ras-mediated malignancies.


Nature | 2014

Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression

Yoonjin Lee; John E. Dominy; Yoon Jong Choi; Michael J. Jurczak; Nicola Tolliday; Joao Paulo Camporez; Helen Chim; Ji Hong Lim; Hai Bin Ruan; Xiaoyong Yang; Francisca Vazquez; Piotr Sicinski; Gerald I. Shulman; Pere Puigserver

Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1–cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3β (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1–Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1–Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.


Journal of Clinical Investigation | 2014

Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

Alejandro Gutierrez; Li Pan; Richard W.J. Groen; Frederic Baleydier; Alex Kentsis; Jason J. Marineau; Ruta Grebliunaite; Elena Kozakewich; Casie Reed; Françoise Pflumio; Sandrine Poglio; Benjamin Uzan; Paul A. Clemons; Lynn VerPlank; Frank An; Jason Burbank; Stephanie Norton; Nicola Tolliday; Hanno Steen; Andrew P. Weng; H. Yuan; James E. Bradner; Constantine S. Mitsiades; A. Thomas Look

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drugs antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.


Cell | 2012

Identification of Regulators of Polyploidization Presents Therapeutic Targets for Treatment of AMKL

Qiang Wen; Benjamin Goldenson; Serena J. Silver; Monica Schenone; Vlado Dančík; Zan Huang; Lingzhi Wang; Tim Lewis; W. Frank An; Xiaoyu Li; Mark Anthony Bray; Clarisse Thiollier; Lauren Diebold; Laure Gilles; Martha S. Vokes; Christopher B. Moore; Meghan Bliss-Moreau; Lynn VerPlank; Nicola Tolliday; Rama K. Mishra; Sasidhar Vemula; Jianjian Shi; Lei Wei; Reuben Kapur; Cécile K. Lopez; Bastien Gerby; Paola Ballerini; Françoise Pflumio; D. Gary Gilliland; Liat Goldberg

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.


Nature Chemical Biology | 2013

Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

Kimberly A. Hartwell; Peter Miller; Siddhartha Mukherjee; Alissa R. Kahn; Alison L. Stewart; David J. Logan; Joseph Negri; Mildred Duvet; Marcus Järås; Rishi V. Puram; Vlado Dančík; Fatima Al-Shahrour; Thomas Kindler; Zuzana Tothova; Shrikanta Chattopadhyay; Thomas Hasaka; Rajiv Narayan; Mingji Dai; Christina Huang; Sebastian Shterental; Lisa P. Chu; J. Erika Haydu; Jae Hung Shieh; David P. Steensma; Benito Munoz; Joshua Bittker; Alykhan F. Shamji; Paul A. Clemons; Nicola Tolliday; Anne E. Carpenter

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.

Collaboration


Dive into the Nicola Tolliday's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siddhartha Mukherjee

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge