Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Carr is active.

Publication


Featured researches published by Steven A. Carr.


Cell | 1998

Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior

Takeshi Sakurai; Akira Amemiya; Makoto Ishii; Ichiyo Matsuzaki; Richard M. Chemelli; Hirokazu Tanaka; S. Clay Williams; James A. Richardson; Gerald P. Kozlowski; Shelagh Wilson; Jonathan R.S. Arch; Robin E. Buckingham; Andrea Haynes; Steven A. Carr; Roland S. Annan; Dean E. McNulty; Wu Schyong Liu; Jonathan A. Terrett; Nabil Elshourbagy; Derk J. SmithKline Beecham Pharm. Bergsma; Masashi Yanagisawa

The hypothalamus plays a central role in the integrated control of feeding and energy homeostasis. We have identified two novel neuropeptides, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors. These peptides, termed orexin-A and -B, have no significant structural similarities to known families of regulatory peptides. prepro-orexin mRNA and immunoreactive orexin-A are localized in neurons within and around the lateral and posterior hypothalamus in the adult rat brain. When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior.


Science | 2006

The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease

Justin Lamb; Emily D Crawford; David Peck; Joshua W. Modell; Irene C. Blat; Matthew J. Wrobel; Jim Lerner; Jean-Philippe Brunet; Aravind Subramanian; Kenneth N. Ross; Michael P Reich; Haley Hieronymus; Guo Wei; Scott A. Armstrong; Stephen J. Haggarty; Paul A. Clemons; Ru Wei; Steven A. Carr; Eric S. Lander; Todd R. Golub

To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this “Connectivity Map” resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.


Nature Biotechnology | 2006

Protein biomarker discovery and validation: the long and uncertain path to clinical utility

Nader Rifai; Michael A. Gillette; Steven A. Carr

Better biomarkers are urgently needed to improve diagnosis, guide molecularly targeted therapy and monitor activity and therapeutic response across a wide spectrum of disease. Proteomics methods based on mass spectrometry hold special promise for the discovery of novel biomarkers that might form the foundation for new clinical blood tests, but to date their contribution to the diagnostic armamentarium has been disappointing. This is due in part to the lack of a coherent pipeline connecting marker discovery with well-established methods for validation. Advances in methods and technology now enable construction of a comprehensive biomarker pipeline from six essential process components: candidate discovery, qualification, verification, research assay optimization, biomarker validation and commercialization. Better understanding of the overall process of biomarker discovery and validation and of the challenges and strategies inherent in each phase should improve experimental study design, in turn increasing the efficiency of biomarker development and facilitating the delivery and deployment of novel clinical tests.


Cell | 2008

A mitochondrial protein compendium elucidates complex I disease biology.

David J. Pagliarini; Sarah E. Calvo; Betty Chang; Sunil Sheth; Scott Vafai; Shao En Ong; Geoffrey A. Walford; Canny Sugiana; Avihu Boneh; William K. Chen; David E. Hill; Marc Vidal; James G. Evans; David R. Thorburn; Steven A. Carr; Vamsi K. Mootha

Mitochondria are complex organelles whose dysfunction underlies a broad spectrum of human diseases. Identifying all of the proteins resident in this organelle and understanding how they integrate into pathways represent major challenges in cell biology. Toward this goal, we performed mass spectrometry, GFP tagging, and machine learning to create a mitochondrial compendium of 1098 genes and their protein expression across 14 mouse tissues. We link poorly characterized proteins in this inventory to known mitochondrial pathways by virtue of shared evolutionary history. Using this approach, we predict 19 proteins to be important for the function of complex I (CI) of the electron transport chain. We validate a subset of these predictions using RNAi, including C8orf38, which we further show harbors an inherited mutation in a lethal, infantile CI deficiency. Our results have important implications for understanding CI function and pathogenesis and, more generally, illustrate how our compendium can serve as a foundation for systematic investigations of mitochondria.


Nature Biotechnology | 2009

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Nature | 2011

Selective killing of cancer cells by a small molecule targeting the stress response to ROS

Lakshmi Raj; Takao Ide; Aditi U. Gurkar; Michael Foley; Monica Schenone; Xiaoyu Li; Nicola Tolliday; Todd R. Golub; Steven A. Carr; Alykhan F. Shamji; Anna Mandinova; Stuart L. Schreiber; Sam W. Lee

Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.


Molecular & Cellular Proteomics | 2007

Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution

Hasmik Keshishian; Terri Addona; Michael Burgess; Eric Kuhn; Steven A. Carr

Biomarker discovery produces lists of candidate markers whose presence and level must be subsequently verified in serum or plasma. Verification represents a paradigm shift from unbiased discovery approaches to targeted, hypothesis-driven methods and relies upon specific, quantitative assays optimized for the selective detection of target proteins. Many protein biomarkers of clinical currency are present at or below the nanogram/milliliter range in plasma and have been inaccessible to date by MS-based methods. Using multiple reaction monitoring coupled with stable isotope dilution mass spectrometry, we describe here the development of quantitative, multiplexed assays for six proteins in plasma that achieve limits of quantitation in the 1–10 ng/ml range with percent coefficients of variation from 3 to 15% without immunoaffinity enrichment of either proteins or peptides. Sample processing methods with sufficient throughput, recovery, and reproducibility to enable robust detection and quantitation of candidate biomarker proteins were developed and optimized by addition of exogenous proteins to immunoaffinity depleted plasma from a healthy donor. Quantitative multiple reaction monitoring assays were designed and optimized for signature peptides derived from the test proteins. Based upon calibration curves using known concentrations of spiked protein in plasma, we determined that each target protein had at least one signature peptide with a limit of quantitation in the 1–10 ng/ml range and linearity typically over 2 orders of magnitude in the measurement range of interest. Limits of detection were frequently in the high picogram/milliliter range. These levels of assay performance represent up to a 1000-fold improvement compared with direct analysis of proteins in plasma by MS and were achieved by simple, robust sample processing involving abundant protein depletion and minimal fractionation by strong cation exchange chromatography at the peptide level prior to LC-multiple reaction monitoring/MS. The methods presented here provide a solid basis for developing quantitative MS-based assays of low level proteins in blood.


Current Biology | 2006

mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s

Maria A. Frias; Carson C. Thoreen; Jacob D. Jaffe; Wayne A. Schroder; Tom B. Sculley; Steven A. Carr; David M. Sabatini

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that participates in at least two distinct multiprotein complexes, mTORC1 and mTORC2 . These complexes play important roles in the regulation of cell growth, proliferation, survival, and metabolism. mTORC2 is a hydrophobic motif kinase for the cell-survival protein Akt/PKB and, here, we identify mSin1 as a component of mTORC2 but not mTORC1. mSin1 is necessary for the assembly of mTORC2 and for its capacity to phosphorylate Akt/PKB. Alternative splicing generates at least five isoforms of the mSin1 protein , three of which assemble into mTORC2 to generate three distinct mTORC2s. Even though all mTORC2s can phosphorylate Akt/PKB in vitro, insulin regulates the activity of only two of them. Thus, we propose that cells contain several mTORC2 flavors that may phosphorylate Akt/PKB in response to different signals.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Science | 2014

Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells

Jan Krönke; Namrata D. Udeshi; Anupama Narla; Peter Grauman; Slater N. Hurst; Marie McConkey; Tanya Svinkina; Dirk Heckl; Eamon Comer; Xiaoyu Li; Christie Ciarlo; Emily Hartman; Nikhil C. Munshi; Monica Schenone; Stuart L. Schreiber; Steven A. Carr; Benjamin L. Ebert

Drug With a (Re)Purpose Thalidomide, once infamous for its deleterious effects on fetal development, has re-emerged as a drug of great interest because of its beneficial immunomodulatory effects. A derivative drug called lenalidomide significantly extends the survival of patients with multiple myeloma, but the molecular mechanisms underlying its efficacy remain unclear (see the Perspective by Stewart). Building on a previous observation that thalidomide binds to cereblon, a ubiquitin ligase, Lu et al. (p. 305, published online 28 November) and Krönke et al. (p. 301, published online 28 November) show that in the presence of lenalidomide, cereblon selectively targets two B cell transcription factors (Ikaros family members, IKZF1 and IKZF3) for degradation. In myeloma cell lines and patient cells, down-regulation of IKZF1 and IKZF3 was necessary and sufficient for the drugs anticancer activity. Thus, lenalidomide may act, at least in part, by “grepurposing” a ubiquitin ligase. A drug with potent activity in multiple myeloma patients acts by inducing degradation of two specific transcription factors. [Also see Perspective by Stewart] Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.

Collaboration


Dive into the Steven A. Carr's collaboration.

Top Co-Authors

Avatar

Karl R. Clauser

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Rodriguez

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge