Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Bobak is active.

Publication


Featured researches published by Nicole Bobak.


Nature Medicine | 2013

Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS

Stefan Bittner; Tobias Ruck; Michael K. Schuhmann; Alexander M. Herrmann; Hamid Moha ou Maati; Nicole Bobak; Kerstin Göbel; Friederike Langhauser; David Stegner; Petra Ehling; Marc Borsotto; Hans-Christian Pape; Bernhard Nieswandt; Christoph Kleinschnitz; Catherine Heurteaux; Hans-Joachim Galla; Thomas Budde; Heinz Wiendl; Sven G. Meuth

The blood-brain barrier (BBB) is an integral part of the neurovascular unit (NVU). The NVU is comprised of endothelial cells that are interconnected by tight junctions resting on a parenchymal basement membrane ensheathed by pericytes, smooth muscle cells and a layer of astrocyte end feet. Circulating blood cells, such as leukocytes, complete the NVU. BBB disruption is common in several neurological diseases, but the molecular mechanisms involved remain largely unknown. We analyzed the role of TWIK-related potassium channel-1 (TREK1, encoded by KCNK2) in human and mouse endothelial cells and the BBB. TREK1 was downregulated in endothelial cells by treatment with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Blocking TREK1 increased leukocyte transmigration, whereas TREK1 activation had the opposite effect. We identified altered mitogen-activated protein (MAP) kinase signaling, actin remodeling and upregulation of cellular adhesion molecules as potential mechanisms of increased migration in TREK1-deficient (Kcnk2−/−) cells. In Kcnk2−/− mice, brain endothelial cells showed an upregulation of the cellular adhesion molecules ICAM1, VCAM1 and PECAM1 and facilitated leukocyte trafficking into the CNS. Following the induction of experimental autoimmune encephalomyelitis (EAE) by immunization with a myelin oligodendrocyte protein (MOG)35–55 peptide, Kcnk2−/− mice showed higher EAE severity scores that were accompanied by increased cellular infiltrates in the central nervous system (CNS). The severity of EAE was attenuated in mice given the amyotrophic lateral sclerosis drug riluzole or fed a diet enriched with linseed oil (which contains the TREK-1 activating omega-3 fatty acid α-linolenic acid). These beneficial effects were reduced in Kcnk2−/− mice, suggesting TREK-1 activating compounds may be used therapeutically to treat diseases related to BBB dysfunction.


Biochimica et Biophysica Acta | 2011

Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels

Nicole Bobak; Stefan Bittner; Joseph Andronic; Susanne Hartmann; Friederike Mühlpfordt; Tilman Schneider-Hohendorf; Karen Wolf; Carsten Schmelter; Kerstin Göbel; Patrick Meuth; Heiko Zimmermann; Frank Döring; Erhard Wischmeyer; Thomas Budde; Heinz Wiendl; Sven G. Meuth; Vladimir L. Sukhorukov

A variety of ion channels are supposed to orchestrate the homoeostatic volume regulation in T lymphocytes. However, the relative contribution of different potassium channels to the osmotic volume regulation and in particular to the regulatory volume decrease (RVD) in T cells is far from clear. This study explores a putative role of the newly identified K(2P) channels (TASK1, TASK2, TASK3 and TRESK) along with the voltage-gated potassium channel K(V)1.3 and the calcium-activated potassium channel K(Ca)3.1 in the RVD of murine T lymphocytes, using genetic and pharmacological approaches. K(2P) channel knockouts exerted profound effects on the osmotic properties of murine T lymphocytes, as revealed by reduced water and RVD-related solute permeabilities. Moreover, both genetic and pharmacological data proved a key role of K(V)1.3 and TASK2 channels in the RVD of murine T cells exposed to hypotonic saline. Our experiments demonstrate a leading role of potassium channels in the osmoregulation of T lymphocytes under different conditions. In summary, the present study sheds new light on the complex and partially redundant network of potassium channels involved in the basic physiological process of the cellular volume homeostasis and extends the repertoire of potassium channels by the family of K(2P) channels.


Experimental Neurology | 2012

The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis

Stefan Bittner; Marcella A. Bauer; Petra Ehling; Nicole Bobak; Johanna Breuer; Alexander M. Herrmann; Melina Golfels; Heinz Wiendl; Thomas Budde; Sven G. Meuth

The two-pore domain potassium channel TASK1 (KCNK3) has recently emerged as an important modulator in autoimmune CNS inflammation. Previously, it was shown that T lymphocytes obtained from TASK1(-/-) mice display impaired T cell effector functions and that TASK1(-/-) mice show a significantly reduced disease severity in myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We here evaluate a potent and specific TASK1 channel inhibitor, A293, which caused a dose-dependent reduction of T cell effector functions (cytokine production and proliferation). This effect was abolished in CD4(+) T cells from TASK1(-/-) mice but not in cells from TASK3(-/-) mice. In electrophysiological measurements, A293 application induced a significant reduction of the outward current of wildtype T lymphocytes, while there was no effect in TASK1(-/-) cells. Preventive and therapeutic application of A293 significantly ameliorated the EAE disease course in wildtype mice while it had no significant effect in TASK1(-/-) mice and was still partly effective in TASK3(-/-) mice. In summary, our findings support the concept of TASK1 as an attractive drug target for autoimmune disorders.


Biochimica et Biophysica Acta | 2013

Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes

Joseph Andronic; Nicole Bobak; Stefan Bittner; Petra Ehling; Christoph Kleinschnitz; Alexander M. Herrmann; Heiko Zimmermann; Markus Sauer; Heinz Wiendl; Thomas Budde; Sven G. Meuth; Vladimir L. Sukhorukov

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.


Experimental & Translational Stroke Medicine | 2010

Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9)

Petra Ehling; Stefan Bittner; Nicole Bobak; Tobias Schwarz; Heinz Wiendl; Thomas Budde; Christoph Kleinschnitz; Sven G. Meuth

BackgroundRecently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1.MethodsWe combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation.ResultsPatch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 ± 9.80% and 69.92 ± 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 ± 17.31 mm3 and 47.10 ± 19.26 mm3, respectively).ConclusionsTogether with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.


Arthritis Research & Therapy | 2011

Expression of K2P5.1 potassium channels on CD4+T lymphocytes correlates with disease activity in rheumatoid arthritis patients

Stefan Bittner; Nicole Bobak; Martin Feuchtenberger; Alexander M. Herrmann; Kerstin Göbel; Raimund W. Kinne; Anker Jon Hansen; Thomas Budde; Christoph Kleinschnitz; Oliver Frey; Hans-Peter Tony; Heinz Wiendl; Sven G. Meuth

IntroductionCD4+ T cells express K2P5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K2P5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K2P5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients.MethodsExpression levels of K2P5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K2P5.1.ResultsK2P5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K2P5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K2P5.1 expression to disease activity parameters during a longitudinal follow-up for six months.ConclusionsDisease activity in RA patients correlates strongly with K2P5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K2P5.1 as a potential biomarker for disease activity and differential diagnosis.


International Journal of Molecular Sciences | 2015

Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms

Stefan Bittner; Nicole Bobak; Majella-Sophie Hofmann; Michael K. Schuhmann; Tobias Ruck; Kerstin Göbel; Wolfgang Brück; Heinz Wiendl; Sven G. Meuth

Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K2P5.1 (TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K2P5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K2P5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K2P5.1 knockout (K2P5.1−/−) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K2P5.1−/− mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K2P3.1 and KV1.3 seems to counterbalance the deletion of K2P5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K2P5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K2P5.1-targeting drugs.


Experimental & Translational Stroke Medicine | 2013

Correction: Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9).

Petra Ehling; Stefan Bittner; Nicole Bobak; Tobias Schwarz; Heinz Wiendl; Thomas Budde; Christoph Kleinschnitz; Sven G. Meuth

It has come to our attention that there is an error in the Acknowledgements section of our article [Experimental & Translational Stroke Medicine 2010, 2:14]. The Acknowledgements section should read:


Journal of Neuroinflammation | 2013

Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

Nico Melzer; Gordon Hicking; Stefan Bittner; Nicole Bobak; Kerstin Göbel; Alexander M. Herrmann; Heinz Wiendl; Sven G. Meuth


Archive | 2013

Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8 + T cell attack in

Nico Melzer; Gordon Hicking; Stefan Bittner; Nicole Bobak; Kerstin Göbel; Alexander M. Herrmann; Heinz Wiendl; Sven G. Meuth

Collaboration


Dive into the Nicole Bobak's collaboration.

Top Co-Authors

Avatar

Heinz Wiendl

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge