Nicole M. Roslin
McGill University Health Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole M. Roslin.
American Journal of Human Genetics | 2006
Clemens Bergwitz; Nicole M. Roslin; Martin Tieder; J C Loredo-Osti; Murat Bastepe; Hilal Abu-Zahra; Danielle Frappier; Kelly M. Burkett; Thomas O. Carpenter; Donald Anderson; Michele Garabedian; Isabelle Sermet; T. Mary Fujiwara; Kenneth Morgan; Harriet S. Tenenhouse; Harald Jüppner
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of autosomal recessive inheritance that was first described in a large consanguineous Bedouin kindred. HHRH is characterized by the presence of hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histological evidence of rickets, limb deformities, muscle weakness, and bone pain. HHRH is distinct from other forms of hypophosphatemic rickets in that affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. We performed a genomewide linkage scan combined with homozygosity mapping, using genomic DNA from a large consanguineous Bedouin kindred that included 10 patients who received the diagnosis of HHRH. The disease mapped to a 1.6-Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaP(i)-IIc. Nucleotide sequence analysis revealed a homozygous single-nucleotide deletion (c.228delC) in this candidate gene in all individuals affected by HHRH. This mutation is predicted to truncate the NaP(i)-IIc protein in the first membrane-spanning domain and thus likely results in a complete loss of function of this protein in individuals homozygous for c.228delC. In addition, compound heterozygous missense and deletion mutations were found in three additional unrelated HHRH kindreds, which supports the conclusion that this disease is caused by SLC34A3 mutations affecting both alleles. Individuals of the investigated kindreds who were heterozygous for a SLC34A3 mutation frequently showed hypercalciuria, often in association with mild hypophosphatemia and/or elevations in 1,25-dihydroxyvitamin D levels. We conclude that NaP(i)-IIc has a key role in the regulation of phosphate homeostasis.
American Journal of Human Genetics | 2001
Sharan Goobie; Maja Popovic; Jodi Morrison; Lynda Ellis; Hedy Ginzberg; Graeme R.B. Boocock; Nadia Ehtesham; Christine Bétard; Carl Brewer; Nicole M. Roslin; Thomas J. Hudson; Kenneth Morgan; T. Mary Fujiwara; Peter R. Durie; Johanna M. Rommens
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematologic and skeletal abnormalities. A genomewide scan of families with SDS was terminated at approximately 50% completion, with the identification of chromosome 7 markers that showed linkage with the disease. Finer mapping revealed significant linkage across a broad interval that included the centromere. The maximum two-point LOD score was 8.7, with D7S473, at a recombination fraction of 0. The maximum multipoint LOD score was 10, in the interval between D7S499 and D7S482 (5.4 cM on the female map and 0 cM on the male map), a region delimited by recombinant events detected in affected children. Evidence from all 15 of the multiplex families analyzed provided support for the linkage, consistent with a single locus for SDS. However, the presence of several different mutations is suggested by the heterogeneity of disease-associated haplotypes in the candidate region.
Human Genomics and Proteomics | 2009
Jemila S Hamid; Pingzhao Hu; Nicole M. Roslin; Vicki Ling; Celia M. T. Greenwood; Joseph Beyene
Due to rapid technological advances, various types of genomic and proteomic data with different sizes, formats, and structures have become available. Among them are gene expression, single nucleotide polymorphism, copy number variation, and protein-protein/gene-gene interactions. Each of these distinct data types provides a different, partly independent and complementary, view of the whole genome. However, understanding functions of genes, proteins, and other aspects of the genome requires more information than provided by each of the datasets. Integrating data from different sources is, therefore, an important part of current research in genomics and proteomics. Data integration also plays important roles in combining clinical, environmental, and demographic data with high-throughput genomic data. Nevertheless, the concept of data integration is not well defined in the literature and it may mean different things to different researchers. In this paper, we first propose a conceptual framework for integrating genetic, genomic, and proteomic data. The framework captures fundamental aspects of data integration and is developed taking the key steps in genetic, genomic, and proteomic data fusion. Secondly, we provide a review of some of the most commonly used current methods and approaches for combining genomic data with focus on the statistical aspects.
American Journal of Human Genetics | 2006
Martin Hřebíček; Lenka Mrázová; Volkan Seyrantepe; Stéphanie Durand; Nicole M. Roslin; Lenka Nosková; Hana Hartmannová; Robert Ivanek; Alena Čížková; Helena Poupětová; Jakub Sikora; Jana Uřinovská; Viktor Stránecký; Jiří Zeman; Pierre Lepage; David Roquis; Andrei Verner; Jérôme Ausseil; Clare E. Beesley; Irène Maire; Ben J. H. M. Poorthuis; Jiddeke M. van de Kamp; Otto P. van Diggelen; Ron A. Wevers; Thomas J. Hudson; T. Mary Fujiwara; Jacek Majewski; Kenneth Morgan; Stanislav Kmoch; Alexey V. Pshezhetsky
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.
Arthritis Research & Therapy | 2008
Joan E. Wither; Yong-Chun Cai; Sooyeol Lim; Tamara Mckenzie; Nicole M. Roslin; Jaime O. Claudio; Glinda S. Cooper; Thomas J. Hudson; Andrew D. Paterson; Celia M. T. Greenwood; Dafna D. Gladman; Janet E. Pope; Christian A. Pineau; C. Douglas Smith; John G. Hanly; Christine A. Peschken; Gilles Boire; CaNIOS Investigators; Paul R. Fortin
IntroductionSystemic lupus erythematosus is a genetically complex disease. Currently, the precise allelic polymorphisms associated with this condition remain largely unidentified. In part this reflects the fact that multiple genes, each having a relatively minor effect, act in concert to produce disease. Given this complexity, analysis of subclinical phenotypes may aid in the identification of susceptibility alleles. Here, we used flow cytometry to investigate whether some of the immune abnormalities that are seen in the peripheral blood lymphocyte population of lupus patients are seen in their first-degree relatives.MethodsPeripheral blood mononuclear cells were isolated from the subjects, stained with fluorochrome-conjugated monoclonal antibodies to identify various cellular subsets, and analyzed by flow cytometry.ResultsWe found reduced proportions of natural killer (NK)T cells among 367 first-degree relatives of lupus patients as compared with 102 control individuals. There were also slightly increased proportions of memory B and T cells, suggesting increased chronic low-grade activation of the immune system in first-degree relatives. However, only the deficiency of NKT cells was associated with a positive anti-nuclear antibody test and clinical autoimmune disease in family members. There was a significant association between mean parental, sibling, and proband values for the proportion of NKT cells, suggesting that this is a heritable trait.ConclusionsThe findings suggest that analysis of cellular phenotypes may enhance the ability to detect subclinical lupus and that genetically determined altered immunoregulation by NKT cells predisposes first-degree relatives of lupus patients to the development of autoimmunity.
Journal of The American Society of Nephrology | 2016
Young Hwan Hwang; John Conklin; Winnie Chan; Nicole M. Roslin; Jannel Liu; Ning He; Kairong Wang; Jamie L. Sundsbak; Christina M. Heyer; Masoom A. Haider; Andrew D. Paterson; Peter C. Harris; York Pei
Renal disease variability in autosomal dominant polycystic kidney disease (ADPKD) is strongly influenced by the gene locus (PKD1 versus PKD2). Recent studies identified nontruncating PKD1 mutations in approximately 30% of patients who underwent comprehensive mutation screening, but the clinical significance of these mutations is not well defined. We examined the genotype-renal function correlation in a prospective cohort of 220 unrelated ADPKD families ascertained through probands with serum creatinine ≤1.4 mg/dl at recruitment. We screened these families for PKD1 and PKD2 mutations and reviewed the clinical outcomes of the probands and affected family members. Height-adjusted total kidney volume (htTKV) was obtained in 161 affected subjects. Multivariate Cox proportional hazard modeling for renal and patient survival was performed in 707 affected probands and family members. Overall, we identified pathogenic mutations in 84.5% of our families, in which the prevalence of PKD1 truncating, PKD1 in-frame insertion/deletion, PKD1 nontruncating, and PKD2 mutations was 38.3%, 4.3%, 27.1%, and 30.3%, respectively. Compared with patients with PKD1 truncating mutations, patients with PKD1 in-frame insertion/deletion, PKD1 nontruncating, or PKD2 mutations have smaller htTKV and reduced risks (hazard ratio [95% confidence interval]) of ESRD (0.35 [0.14 to 0.91], 0.10 [0.05 to 0.18], and 0.03 [0.01 to 0.05], respectively) and death (0.31 [0.11 to 0.87], 0.20 [0.11 to 0.38], and 0.18 [0.11 to 0.31], respectively). Refined genotype-renal disease correlation coupled with targeted next generation sequencing of PKD1 and PKD2 may provide useful clinical prognostication for ADPKD.
PLOS ONE | 2010
Miralem Mrkonjic; Nicole M. Roslin; Celia M. T. Greenwood; Stavroula Raptis; Aaron Pollett; Peter W. Laird; Vaijayanti Pethe; Theodore Chiang; Darshana Daftary; Elizabeth Dicks; Stephen N. Thibodeau; Steven Gallinger; Patrick S. Parfrey; H. Banfield Younghusband; John D. Potter; Thomas J. Hudson; John R. McLaughlin; Roger C. Green; Brent W. Zanke; Polly A. Newcomb; Andrew D. Paterson; Bharati Bapat
Background We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability. Methodology/Principal Findings We first tested our hypothesis in one sample from Ontario (901 cases, 1,097 controls) and replicated major findings in two additional samples from Newfoundland and Labrador (479 cases, 336 controls) and from Seattle (591 cases, 629 controls). Logistic regression was used to test for association between SNPs in the region of MLH1 and CRC, MSI-H CRC, MLH1 gene expression in CRC, and DNA methylation in CRC. The association between rs1800734 and MSI-H CRCs, previously reported in Ontario and Newfoundland, was replicated in the Seattle sample. Two additional SNPs, in strong linkage disequilibrium with rs1800734, showed strong associations with MLH1 promoter methylation, loss of MLH1 protein, and MSI-H CRC in all three samples. The logistic regression model of MSI-H CRC that included MLH1-promoter-methylation status and MLH1 immunohisotchemistry status fit most parsimoniously in all three samples combined. When rs1800734 was added to this model, its effect was not statistically significant (P-value = 0.72 vs. 2.3×10−4 when the SNP was examined alone). Conclusions/Significance The observed association of rs1800734 with MSI-H CRC occurs through its effect on the MLH1 promoter methylation, MLH1 IHC deficiency, or both.
European Journal of Human Genetics | 2008
James C. Engert; Mathieu Lemire; Janet Faith; Diane Brisson; T. Mary Fujiwara; Nicole M. Roslin; Carl Brewer; Alexandre Montpetit; Corinne Darmond-Zwaig; Yannick Renaud; Carole Doré; Swneke D. Bailey; Andrei Verner; Gérald Tremblay; Julie St-Pierre; Christine Bétard; Jill Platko; John D. Rioux; Kenneth Morgan; Thomas J. Hudson; Daniel Gaudet
Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregation, with heritability estimated to be greater than 50%. The French Canadian population of the Saguenay-Lac Saint-Jean region of Quebec, Canada is descended from a founder population that settled this region 300–400 years ago and this may provide increased power to detect genes contributing to complex traits such as CHD. Probands with early-onset CHD, defined by angiographically determined coronary stenosis, and their relatives were recruited from this population (average sibship size of 6.4). Linkage analysis was performed following a genome-wide microsatellite marker scan on 42 families with 284 individuals. Nonparametric linkage (NPL) analysis provided suggestive evidence for a CHD susceptibility locus on chromosome 8 with an NPL score of 3.14 (P=0.001) at D8S1106. Linkage to this locus was verified by fine mapping in an enlarged sample of 50 families with 320 individuals. This analysis provided evidence of linkage at D8S552 (NPL score=3.53, P=0.0003), a marker that maps to the same location as D8S1106. Candidate genes in this region, including macrophage scavenger receptor 1, farnesyl-diphosphate farnesyltransferase 1, fibrinogen-like 1, and GATA-binding protein 4, were resequenced in all coding exons in both affected and unaffected individuals. Association studies with variants in these and five other genes did not identify a disease-associated mutation. In conclusion, a genome-wide scan and additional fine mapping provide evidence for a locus on chromosome 8 that contributes to CHD in a French Canadian population.
Brain | 2015
Rebekah Jobling; Mirna M. Assoum; Oleksandr Gakh; Susan Blaser; Julian Raiman; Cyril Mignot; Emmanuel Roze; Alexandra Durr; Alexis Brice; Nicolas Lévy; Chitra Prasad; Tara Paton; Andrew Paterson; Nicole M. Roslin; Christian R. Marshall; Jean Pierre Desvignes; Nathalie Roëckel-Trevisiol; Stephen W. Scherer; Guy A. Rouleau; André Mégarbané; Grazia Isaya; Valérie Delague; Grace Yoon
Non-progressive cerebellar ataxias are a rare group of disorders that comprise approximately 10% of static infantile encephalopathies. We report the identification of mutations in PMPCA in 17 patients from four families affected with cerebellar ataxia, including the large Lebanese family previously described with autosomal recessive cerebellar ataxia and short stature of Norman type and localized to chromosome 9q34 (OMIM #213200). All patients present with non-progressive cerebellar ataxia, and the majority have intellectual disability of variable severity. PMPCA encodes α-MPP, the alpha subunit of mitochondrial processing peptidase, the primary enzyme responsible for the maturation of the vast majority of nuclear-encoded mitochondrial proteins, which is necessary for life at the cellular level. Analysis of lymphoblastoid cells and fibroblasts from patients homozygous for the PMPCA p.Ala377Thr mutation and carriers demonstrate that the mutation impacts both the level of the alpha subunit encoded by PMPCA and the function of mitochondrial processing peptidase. In particular, this mutation impacts the maturation process of frataxin, the protein which is depleted in Friedreich ataxia. This study represents the first time that defects in PMPCA and mitochondrial processing peptidase have been described in association with a disease phenotype in humans.
American Journal of Human Genetics | 2004
Mathieu Lemire; Nicole M. Roslin; Catherine Laprise; Thomas J. Hudson; Kenneth Morgan
We studied the effect of transmission-ratio distortion (TRD) on tests of linkage based on allele sharing in affected sib pairs. We developed and implemented a discrete-trait allele-sharing test statistic, Sad, analogous to the Spairs test statistic of Whittemore and Halpern, that evaluates an excess sharing of alleles at autosomal loci in pairs of affected siblings, as well as a lack of sharing in phenotypically discordant relative pairs, where available. Under the null hypothesis of no linkage, nuclear families with at least two affected siblings and one unaffected sibling have a contribution to Sad that is unbiased, with respect to the effects of TRD independent of the disease under study. If more distantly related unaffected individuals are studied, the bias of Sad is generally reduced compared with that of Spairs, but not completely. Moreover, Sad has higher power, in some circumstances, because of the availability of unaffected relatives, who are ignored in affected-only analyses. We discuss situations in which it may be an efficient use of resources to genotype unaffected relatives, which would give insights for promising study designs. The method is applied to a sample of pedigrees ascertained for asthma in a chromosomal region in which TRD has been reported. Results are consistent with the presence of transmission distortion in that region.