Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels H. Skotte is active.

Publication


Featured researches published by Niels H. Skotte.


Molecular Therapy | 2011

Potent and Selective Antisense Oligonucleotides Targeting Single-Nucleotide Polymorphisms in the Huntington Disease Gene / Allele-Specific Silencing of Mutant Huntingtin

Jeffrey B. Carroll; Simon C. Warby; Amber L. Southwell; Crystal N. Doty; Sarah Greenlee; Niels H. Skotte; Gene Hung; C. Frank Bennett; Susan M. Freier; Michael R. Hayden

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo.


Nucleic Acids Research | 2013

Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS.

Michael E. Østergaard; Amber L. Southwell; Holly Kordasiewicz; Andrew T. Watt; Niels H. Skotte; Crystal N. Doty; Kuljeet Vaid; Erika B. Villanueva; Eric E. Swayze; C. Frank Bennett; Michael R. Hayden; Punit P. Seth

Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders.


Trends in Molecular Medicine | 2012

Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases

Amber L. Southwell; Niels H. Skotte; C. Frank Bennett; Michael R. Hayden

The rising median age of our population and the age-dependent risk of neurodegeneration translate to exponentially increasing numbers of afflicted individuals in the coming years. Although symptomatic treatments are available for some neurodegenerative diseases, most are only moderately efficacious and are often associated with significant side effects. The development of small molecule, disease-modifying drugs has been hindered by complex pathogenesis and a failure to clearly define the rate-limiting steps in disease progression. An alternative approach is to directly target the mutant gene product or a defined causative protein. Antisense oligonucleotides (ASOs) - with their diverse functionality, high target specificity, and relative ease of central nervous system (CNS) delivery - are uniquely positioned as potential therapies for neurological diseases. Here we review the development of ASOs for the treatment of inherited neurodegenerative diseases.


Human Molecular Genetics | 2010

Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

Mahmoud A. Pouladi; Yuanyun Xie; Niels H. Skotte; Dagmar E. Ehrnhoefer; Rona K. Graham; Jeong Eun Kim; Nagat Bissada; X. William Yang; Paolo Paganetti; Robert M. Friedlander; Blair R. Leavitt; Michael R. Hayden

Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing a truncated N-terminal htt fragment (shortstop), indicating that FL htt is required for the modulation of IGF-1 expression. Treatment with 17beta-estradiol (17beta-ED) lowers the levels of circulating IGF-1 in mammals. Treatment of YAC128 with 17beta-ED, but not placebo, reduces plasma IGF-1 levels and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128 and littermate WT mice. We demonstrate that the levels of FL htt influence IGF-1 expression in striatal tissues. Our data identify a novel function for FL htt in influencing IGF-1 expression.


Molecular Therapy | 2014

In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides.

Amber L. Southwell; Niels H. Skotte; Holly Kordasiewicz; Michael E. Østergaard; Andrew T. Watt; Jeffrey B. Carroll; Crystal N. Doty; Erika B. Villanueva; Eugenia Petoukhov; Kuljeet Vaid; Yuanyun Xie; Susan M. Freier; Eric E. Swayze; Punit P. Seth; C. Bennett; Michael R. Hayden

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


Human Molecular Genetics | 2012

Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice

Valeria Uribe; Bibiana K.Y. Wong; Rona K. Graham; Corey L. Cusack; Niels H. Skotte; Mahmoud A. Pouladi; Yuanyun Xie; Konstantin Feinberg; Yimiao Ou; Yingbin Ouyang; Yu Deng; Sonia Franciosi; Nagat Bissada; Amanda Spreeuw; Weining Zhang; Dagmar E. Ehrnhoefer; Kuljeet Vaid; Freda D. Miller; Mohanish Deshmukh; David Howland; Michael R. Hayden

Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.


Human Molecular Genetics | 2013

A fully humanized transgenic mouse model of Huntington disease

Amber L. Southwell; Simon C. Warby; Jeffrey B. Carroll; Crystal N. Doty; Niels H. Skotte; Weining Zhang; Erika B. Villanueva; Vlad Kovalik; Yuanyun Xie; Mahmoud A. Pouladi; Jennifer A. Collins; X. William Yang; Sonia Franciosi; Michael R. Hayden

Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.


PLOS ONE | 2014

Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

Niels H. Skotte; Amber L. Southwell; Michael E. Østergaard; Jeffrey B. Carroll; Simon C. Warby; Crystal N. Doty; Eugenia Petoukhov; Kuljeet Vaid; Holly Kordasiewicz; Andrew T. Watt; Susan M. Freier; Gene Hung; Punit P. Seth; C. Frank Bennett; Eric E. Swayze; Michael R. Hayden

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.


Proceedings of the National Academy of Sciences of the United States of America | 2014

HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response.

Barak Rotblat; Amber L. Southwell; Dagmar E. Ehrnhoefer; Niels H. Skotte; Martina Metzler; Sonia Franciosi; Gabriel Leprivier; Syam Prakash Somasekharan; Adi Barokas; Yu Deng; Tiffany Tang; Joan Mathers; Naniye Malli Cetinbas; Mads Daugaard; Brian Kwok; Liheng Li; Christopher J. Carnie; Dieter Fink; Roberto Nitsch; Jason D. Galpin; Christopher A. Ahern; Gerry Melino; Josef M. Penninger; Michael R. Hayden; Poul H. Sorensen

Significance Oxidative stress is an important contributor to aging-associated diseases including cancer and neurodegeneration, and antioxidant stress responses are critical to limit manifestations of these diseases. We report that the tumor suppressor Homologous to the E6-AP Carboxyl Terminus domain and Ankyrin repeat containing E3 ubiquitin–protein ligase 1 (HACE1) promotes activity of the transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidative stress response. In Huntington disease patients, HACE1 is lost in the brain region most affected by the disease, namely the striatum, and restoring HACE1 functions in striatal cells expressing mutant Huntingtin protein provides protection against oxidative stress. Therefore, the tumor suppressor HACE1 is a new regulator of NRF2 and an emerging player in neurodegeneration. Oxidative stress plays a key role in late onset diseases including cancer and neurodegenerative diseases such as Huntington disease. Therefore, uncovering regulators of the antioxidant stress responses is important for understanding the course of these diseases. Indeed, the nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the cellular antioxidative stress response, is deregulated in both cancer and neurodegeneration. Similar to NRF2, the tumor suppressor Homologous to the E6-AP Carboxyl Terminus (HECT) domain and Ankyrin repeat containing E3 ubiquitin–protein ligase 1 (HACE1) plays a protective role against stress-induced tumorigenesis in mice, but its roles in the antioxidative stress response or its involvement in neurodegeneration have not been investigated. To this end we examined Hace1 WT and KO mice and found that Hace1 KO animals exhibited increased oxidative stress in brain and that the antioxidative stress response was impaired. Moreover, HACE1 was found to be essential for optimal NRF2 activation in cells challenged with oxidative stress, as HACE1 depletion resulted in reduced NRF2 activity, stability, and protein synthesis, leading to lower tolerance against oxidative stress triggers. Strikingly, we found a reduction of HACE1 levels in the striatum of Huntington disease patients, implicating HACE1 in the pathology of Huntington disease. Moreover, ectopic expression of HACE1 in striatal neuronal progenitor cells provided protection against mutant Huntingtin-induced redox imbalance and hypersensitivity to oxidative stress, by augmenting NRF2 functions. These findings reveal that the tumor suppressor HACE1 plays a role in the NRF2 antioxidative stress response pathway and in neurodegeneration.


Clinical Genetics | 2014

Personalized gene silencing therapeutics for Huntington disease.

Chris Kay; Niels H. Skotte; Amber L. Southwell; Michael R. Hayden

Gene silencing offers a novel therapeutic strategy for dominant genetic disorders. In specific diseases, selective silencing of only one copy of a gene may be advantageous over non‐selective silencing of both copies. Huntington disease (HD) is an autosomal dominant disorder caused by an expanded CAG trinucleotide repeat in the Huntingtin gene (HTT). Silencing both expanded and normal copies of HTT may be therapeutically beneficial, but preservation of normal HTT expression is preferred. Allele‐specific methods can selectively silence the mutant HTT transcript by targeting either the expanded CAG repeat or single nucleotide polymorphisms (SNPs) in linkage disequilibrium with the expansion. Both approaches require personalized treatment strategies based on patient genotypes. We compare the prospect of safe treatment of HD by CAG‐ and SNP‐specific silencing approaches and review HD population genetics used to guide target identification in the patient population. Clinical implementation of allele‐specific HTT silencing faces challenges common to personalized genetic medicine, requiring novel solutions from clinical scientists and regulatory authorities.

Collaboration


Dive into the Niels H. Skotte's collaboration.

Top Co-Authors

Avatar

Michael R. Hayden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Amber L. Southwell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Crystal N. Doty

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dagmar E. Ehrnhoefer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yuanyun Xie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Erika B. Villanueva

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kuljeet Vaid

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge