Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanyun Xie is active.

Publication


Featured researches published by Yuanyun Xie.


The Journal of Neuroscience | 2007

Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury

Jeff Biernaskie; Joseph S. Sparling; Jie Liu; Casey Shannon; Jason R. Plemel; Yuanyun Xie; Freda D. Miller; Wolfram Tetzlaff

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.


Brain | 2008

Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin

Mahmoud A. Pouladi; Rona K. Graham; Joanna M. Karasinska; Yuanyun Xie; Rachelle Dar Santos; Åsa Petersén; Michael R. Hayden

Huntington disease is a neurodegenerative disorder caused by an expanded CAG repeat in the Huntington disease gene. The symptomatic phase of the disease is defined by the onset of motor symptoms. However, psychiatric disturbances, including depression, are common features of Huntington disease and recent studies indicate that depression can occur long before the manifestation of motor symptoms. The aetiology of depression in Huntington disease is not fully understood and psychosocial factors such as the knowledge of carrying a mutation for an incurable disease or adverse social circumstances may contribute to its presentation. Due to the difficulties in discriminating between social and biological factors as contributors to depression in clinical Huntington disease, we chose to assess whether a model for Huntington disease not subject to environmental stressors, namely the YAC mouse model of Huntington disease, displays a depressive phenotype. Indeed, the YAC transgenic mice recapitulate the early depressive phenotype of Huntington disease as assessed by the Porsolt forced swim test as well as the sucrose intake test as a measure of anhedonia. The YAC model mirrors clinical Huntington disease in that there were no effects of CAG repeat length or disease duration on the depressive phenotype. The depressive phenotype was completely rescued in YAC transgenic animals expressing a variant of mutant huntingtin that is resistant to cleavage at amino acid 586 suggesting that therapies aimed towards inhibition of huntingtin cleavage are also likely to have beneficial effects on this aspect of the disease. In conclusion, our study provides strong support for a primary neurobiological basis for depression in Huntington disease.


Human Molecular Genetics | 2012

Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice

Mahmoud A. Pouladi; Lisa M. Stanek; Yuanyun Xie; Sonia Franciosi; Amber L. Southwell; Yu Deng; Stefanie L. Butland; Weining Zhang; Seng H. Cheng; Lamya S. Shihabuddin; Michael R. Hayden

The development of animal models of Huntington disease (HD) has enabled studies that help define the molecular aberrations underlying the disease. The BACHD and YAC128 transgenic mouse models of HD harbor a full-length mutant huntingtin (mHTT) and recapitulate many of the behavioural and neuropathological features of the human condition. Here, we demonstrate that while BACHD and YAC128 animals exhibit similar deficits in motor learning and coordination, depressive-like symptoms, striatal volume loss and forebrain weight loss, they show obvious differences in key features characteristic of HD. While YAC128 mice exhibit significant and widespread accumulation of mHTT striatal aggregates, these mHTT aggregates are absent in BACHD mice. Furthermore, the levels of several striatally enriched mRNA for genes, such as DARPP-32, enkephalin, dopamine receptors D1 and D2 and cannabinoid receptor 1, are significantly decreased in YAC128 but not BACHD mice. These findings may reflect sequence differences in the human mHTT transgenes harboured by the BACHD and YAC128 mice, including both single nucleotide polymorphisms as well as differences in the nature of CAA interruptions of the CAG tract. Our findings highlight a similar profile of HD-like behavioural and neuropathological deficits and illuminate differences that inform the use of distinct endpoints in trials of therapeutic agents in the YAC128 and BACHD mice.


Neurobiology of Disease | 2011

Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease.

Jessica M. Simpson; Joana Gil-Mohapel; Mahmoud A. Pouladi; Mohamed Ghilan; Yuanyun Xie; Michael R. Hayden; Brian R. Christie

Perturbations in neurogenesis in the adult brain have been implicated in impaired learning and memory. In the present study, we investigated which stages of the neurogenic process are affected in the transgenic YAC128 mouse model of Huntington disease (HD). Hippocampal neuronal proliferation was altered in the dentate gyrus (DG) of YAC128 mice as compared with wild-type (WT) littermate controls in early symptomatic to end-stage mice. In addition, we detected a significantly lower number of immature neurons in the DG of young, pre-symptomatic YAC128 mice. This decrease in neuronal differentiation persisted through the progression of the disease, and resulted in an overall reduction in the number of new mature neurons in the DG of YAC128 mice. There were no changes in cell proliferation and differentiation in the subventricular zone (SVZ). In this study, we demonstrate decreases in neurogenesis in the DG of YAC128 mice, and these deficits may contribute to the cognitive abnormalities observed in these animals.


Human Molecular Genetics | 2010

Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

Mahmoud A. Pouladi; Yuanyun Xie; Niels H. Skotte; Dagmar E. Ehrnhoefer; Rona K. Graham; Jeong Eun Kim; Nagat Bissada; X. William Yang; Paolo Paganetti; Robert M. Friedlander; Blair R. Leavitt; Michael R. Hayden

Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing a truncated N-terminal htt fragment (shortstop), indicating that FL htt is required for the modulation of IGF-1 expression. Treatment with 17beta-estradiol (17beta-ED) lowers the levels of circulating IGF-1 in mammals. Treatment of YAC128 with 17beta-ED, but not placebo, reduces plasma IGF-1 levels and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128 and littermate WT mice. We demonstrate that the levels of FL htt influence IGF-1 expression in striatal tissues. Our data identify a novel function for FL htt in influencing IGF-1 expression.


Molecular Therapy | 2014

In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides.

Amber L. Southwell; Niels H. Skotte; Holly Kordasiewicz; Michael E. Østergaard; Andrew T. Watt; Jeffrey B. Carroll; Crystal N. Doty; Erika B. Villanueva; Eugenia Petoukhov; Kuljeet Vaid; Yuanyun Xie; Susan M. Freier; Eric E. Swayze; Punit P. Seth; C. Bennett; Michael R. Hayden

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


Human Molecular Genetics | 2012

Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice

Valeria Uribe; Bibiana K.Y. Wong; Rona K. Graham; Corey L. Cusack; Niels H. Skotte; Mahmoud A. Pouladi; Yuanyun Xie; Konstantin Feinberg; Yimiao Ou; Yingbin Ouyang; Yu Deng; Sonia Franciosi; Nagat Bissada; Amanda Spreeuw; Weining Zhang; Dagmar E. Ehrnhoefer; Kuljeet Vaid; Freda D. Miller; Mohanish Deshmukh; David Howland; Michael R. Hayden

Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.


Human Molecular Genetics | 2013

A fully humanized transgenic mouse model of Huntington disease

Amber L. Southwell; Simon C. Warby; Jeffrey B. Carroll; Crystal N. Doty; Niels H. Skotte; Weining Zhang; Erika B. Villanueva; Vlad Kovalik; Yuanyun Xie; Mahmoud A. Pouladi; Jennifer A. Collins; X. William Yang; Sonia Franciosi; Michael R. Hayden

Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.


Neurobiology of Disease | 2015

Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease

Amber L. Southwell; Sonia Franciosi; Erika B. Villanueva; Yuanyun Xie; Laurie A. Winter; Janaki Veeraraghavan; Alan S. Jonason; Boguslaw Felczak; Weining Zhang; Vlad Kovalik; Sabine Waltl; George Hall; Mahmoud A. Pouladi; Ernest S. Smith; William J. Bowers; Maurice Zauderer; Michael R. Hayden

Huntington disease (HD) is an inherited, fatal neurodegenerative disease with no disease-modifying therapy currently available. In addition to characteristic motor deficits and atrophy of the caudate nucleus, signature hallmarks of HD include behavioral abnormalities, immune activation, and cortical and white matter loss. The identification and validation of novel therapeutic targets that contribute to these degenerative cellular processes may lead to new interventions that slow or even halt the course of this insidious disease. Semaphorin 4D (SEMA4D) is a transmembrane signaling molecule that modulates a variety of processes central to neuroinflammation and neurodegeneration including glial cell activation, neuronal growth cone collapse and apoptosis of neural precursors, as well as inhibition of oligodendrocyte migration, differentiation and process formation. Therefore, inhibition of SEMA4D signaling could reduce CNS inflammation, increase neuronal outgrowth and enhance oligodendrocyte maturation, which may be of therapeutic benefit in the treatment of several neurodegenerative diseases, including HD. To that end, we evaluated the preclinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody, which prevents the interaction between SEMA4D and its receptors, in the YAC128 transgenic HD mouse model. Anti-SEMA4D treatment ameliorated neuropathological signatures, including striatal atrophy, cortical atrophy, and corpus callosum atrophy and prevented testicular degeneration in YAC128 mice. In parallel, a subset of behavioral symptoms was improved in anti-SEMA4D treated YAC128 mice, including reduced anxiety-like behavior and rescue of cognitive deficits. There was, however, no discernible effect on motor deficits. The preservation of brain gray and white matter and improvement in behavioral measures in YAC128 mice treated with anti-SEMA4D suggest that this approach could represent a viable therapeutic strategy for the treatment of HD. Importantly, this work provides in vivo demonstration that inhibition of pathways initiated by SEMA4D constitutes a novel approach to moderation of neurodegeneration.


Neurobiology of Disease | 2012

NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease.

Mahmoud A. Pouladi; Elsa Brillaud; Yuanyun Xie; Paola Conforti; Rona K. Graham; Dagmar E. Ehrnhoefer; Sonia Franciosi; Weining Zhang; Patrick Poucheret; Elsa Compte; Jean-Claude Maurel; Chiara Zuccato; Christian Neri; Michael R. Hayden

Huntington disease (HD), a neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene, remains without a treatment to modify the course of the illness. Lithium, a drug widely used for the treatment of bipolar disorder, has been shown to exert neuroprotective effects in a number of models of neurological disease but may have various toxic effects at conventional therapeutic doses. We examined whether NP03, a novel low-dose lithium microemulsion, would improve the disease phenotypes in the YAC128 mouse model of HD. We demonstrate that NP03 improves motor function, ameliorates the neuropathological deficits in striatal volume, neuronal counts, and DARPP-32 expression, and partially rescues testicular atrophy in YAC128 mice. These positive effects were accompanied by improvements in multiple biochemical endpoints associated with the pathogenesis of HD, including normalization of caspase-6 activation and amelioration of deficits in BDNF levels, and with no lithium-related toxicity. Our findings demonstrate that NP03 ameliorates the motor and neuropathological phenotypes in the YAC128 mouse model of HD, and represents a potential therapeutic approach for HD.

Collaboration


Dive into the Yuanyun Xie's collaboration.

Top Co-Authors

Avatar

Michael R. Hayden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Amber L. Southwell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Mahmoud A. Pouladi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Erika B. Villanueva

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Niels H. Skotte

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Crystal N. Doty

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sonia Franciosi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Weining Zhang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Boguslaw Felczak

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dagmar E. Ehrnhoefer

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge