Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Juel Paulsen is active.

Publication


Featured researches published by Sarah Juel Paulsen.


Journal of Endocrinology | 2010

Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome.

Andreas N. Madsen; Gitte Hansen; Sarah Juel Paulsen; Kirsten Lykkegaard; Mads Tang-Christensen; Harald S. Hansen; Barry E. Levin; Philip J. Larsen; Lotte Bjerre Knudsen; Keld Fosgerau; Niels Vrang

The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.


PLOS ONE | 2013

Hypertrophy Dependent Doubling of L-Cells in Roux-en-Y Gastric Bypass Operated Rats

Carl Frederik Hansen; Marco Bueter; Nadine Theis; Thomas A. Lutz; Sarah Juel Paulsen; Louise S. Dalbøge; Niels Vrang; Jacob Jelsing

Background and Aims Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal. Methods The full rostrocaudal extension of the gut was analyzed in rats after RYGB and in sham-operated controls ad libitum fed or food restricted to match the body weight of RYGB rats. Total number of L-cells, as well as regional numbers, densities and mucosa volumes were quantified using stereological methods. Preproglucagon and PYY mRNA transcripts were quantified by qPCR to reflect the total and relative hormone production capacity of the L-cells. Results RYGB surgery induced hypertrophy of the gut mucosa in the food exposed regions of the small intestine coupled with a doubling in the total number of L-cells. No changes in L-cell density were observed in any region regardless of surgery or food restriction. The total gene expression capacity of the entire gut revealed a near 200% increase in both PYY and preproglucagon mRNA levels in RYGB rats associated with both increased L-cell number as well as region-specific increased transcription per cell. Conclusions Collectively, these findings indicate that RYGB in rats is associated with gut hypertrophy, an increase in L-cell number, but not density, and increased PYY and preproglucagon gene expression. This could explain the enhanced gut hormone dynamics seen after RYGB.


Endocrinology | 2015

Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain.

Kristy M. Heppner; Melissa A. Kirigiti; Anna Secher; Sarah Juel Paulsen; Rikley Buckingham; Charles Pyke; Lotte Bjerre Knudsen; Niels Vrang; Kevin L. Grove

Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent.


Nature Medicine | 2017

GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand.

Linda Yang; Chihchuan Chang; Zhe Sun; Dennis Madsen; Haisun Zhu; Søren Berg Padkjær; Xiaoai Wu; Tao Huang; Karin Hultman; Sarah Juel Paulsen; Jishu Wang; Anne Bugge; Jane Boesen Frantzen; Per Nørgaard; Jacob Jeppesen; Zhiru Yang; Anna Secher; Haibin Chen; Xun Li; Linu Mary John; Bing Shan; Zhenhua He; Xiang Gao; Jing Su; Kristian T Hansen; Wei Yang; Sebastian B. Jørgensen

Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-β superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15–GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.


PLOS ONE | 2014

Expression of the Fatty Acid Receptor GPR120 in the Gut of Diet-Induced-Obese Rats and Its Role in GLP-1 Secretion

Sarah Juel Paulsen; Leif Kongskov Larsen; Gitte Hansen; Shekar Siddalingaiah Chelur; Philip J. Larsen; Niels Vrang

Stimulation of the G protein coupled receptor GPR120 has been shown to have anti-inflammatory and insulin-sensitizing effects, to promote glucagon like peptide-1 (GLP-1) secretion, and to play a key role in sensing dietary fat and control energy balance. In a search for differentially expressed genes potentially involved in food intake and body-weight regulation we identified GPR120 to be differentially regulated in the intestine of selectively bred diet induced obese (DIO) and diet resistant (DR) rats. Subsequently we investigated the effect of GPR120 receptor stimulation with the long chain fatty acid alpha linolenic acid (ALA) on GLP-1 secretion in rats. Independent of diet (high or low fat), GPR120 expression showed a two-fold increase in the intestine of DIO compared to DR rats. In situ hybridization revealed a broad expression of GPR120 in the gut mucosa in both intestinal epithelial and endocrine cells. Using double in situ hybridization GPR120 mRNA did not appear to be enriched in preproglucagon expressing L-cells. In line with the anatomical data, ALA administration did not increase circulating GLP-1 levels. Our data shows a widespread expression of GPR120 in the gut epithelium and can not confirm a major role for GPR120 in the regulation of GLP-1 secretion. The broad expression of GPR120 in the gut epithelium supports reports indicating a putative role of GPR120 as a sensor of dietary fat.


Obesity | 2010

Characterization of β-Cell Mass and Insulin Resistance in Diet-induced Obese and Diet-resistant Rats

Sarah Juel Paulsen; Jacob Jelsing; Andreas N. Madsen; Gitte Hansen; Kirsten Lykkegaard; Leif Kongskov Larsen; Philip J. Larsen; Barry E. Levin; Niels Vrang

The selectively bred diet‐induced obese (DIO) and diet‐resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high‐energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin‐producing β‐cells. At the time of weaning, DR rats were found to have a higher body weight and β‐cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow‐fed DIO rats steadily increased their body weight and β‐cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased β‐cell mass. Interestingly, although the β‐cell mass in DR rats and chow‐fed DIO rats appeared to constantly increase with age, the β‐cell mass in the HE‐fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE‐fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.


Journal of Anatomy | 2010

Stereological assessment of pancreatic beta-cell mass development in male Zucker Diabetic Fatty (ZDF) rats: correlation with pancreatic beta-cell function.

Sarah Juel Paulsen; Niels Vrang; Leif Kongskov Larsen; Philip J. Larsen; Jacob Jelsing

The present study was initiated to improve our understanding of pancreatic beta‐cell dynamics in male Zucker Diabetic Fatty (ZDF) rats and hence provide a framework for future diabetes studies in this animal model. Male ZDF rats from 6, 8, 10, 12, 14, 16, 20 and 26 weeks of age were subjected to an oral glucose tolerance test (OGTT). The animals were then euthanized and pancreases were removed for morphometric analyses of pancreatic beta‐cell mass. As evident by a marked fourfold increase in insulin secretion, insulin resistance developed rapidly from 6 to 8 weeks of age. Simultaneously, the pancreatic beta‐cell mass expanded from 6.17 ± 0.41 mg at 6 weeks of age, reaching a maximum of 16.5 ± 2.5 mg at 16 weeks of age, at which time pancreatic beta‐cell mass gradually declined. The corresponding changes in glucose/insulin homeostasis were analysed using a standard insulin sensitivity index (ISI), an area under the curve (AUC) glucose‐insulin index, or simple semi‐fasted glucose levels. The study demonstrated that male ZDF rats underwent rapid changes in pancreatic beta‐cell mass from the onset of insulin resistance to frank diabetes coupled directly to marked alterations in glucose/insulin homeostasis. The study underscores the need for a critical co‐examination of glucose homeostatic parameters in studies investigating the effects of novel anti‐diabetic compounds on pancreatic beta‐cell mass in the male ZDF rat. A simple assessment of fasting glucose levels coupled with information about age can provide a correct indication of the actual pancreatic beta‐cell mass and the physiological state of the animal.


European Journal of Pharmacology | 2014

The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat.

Henrik H. Hansen; Gitte Hansen; Sarah Juel Paulsen; Niels Vrang; Michael Mark; Jacob Jelsing; Thomas Klein

Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.


Journal of Neuroscience Methods | 2009

Gene expression profiling of individual hypothalamic nuclei from single animals using laser capture microdissection and microarrays.

Sarah Juel Paulsen; Leif Kongskov Larsen; Jacob Jelsing; Uwe Janßen; Bernhard Gerstmayer; Niels Vrang

In order to identify novel genes involved in appetite and body weight regulation we have developed a microarray based method suitable for detecting small changes in gene expression in discrete groups of hypothalamic neurons. The method is based on a combination of stereological sampling, laser capture microdissection (LCM), PCR based amplification (SuperAmp), and one-color cDNA microarray analysis. To validate the method we assessed and compared fasting induced changes in mRNA levels of Neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the hypothalamic arcuate nucleus (ARC) of diet-induced obese rats using cDNA microarrays, quantitative PCR and in situ hybridization. All methods revealed statistically significant fasting-induced changes in NPY and POMC expression. An additional 3480 differentially expressed probes (fold change >1.22, t-test p=0.05) were identified in the microarray analysis. Our findings demonstrate a consistent gene expression pattern across three different gene expression detection methods and strongly suggest that LCM coupled microarray analysis combined with SuperAmp can be used as a semi-quantitative mRNA profiling tool. Importantly, the sensitivity of the method greatly improves the usefulness of the microarray technology for gene expression profiling in non-homogeneous tissues such as the brain.


Brain Research | 2008

The putative neuropeptide TAFA5 is expressed in the hypothalamic paraventricular nucleus and is regulated by dehydration.

Sarah Juel Paulsen; Mads Tang Christensen; Niels Vrang; Leif Kongskov Larsen

In a search for novel genes involved in the hypothalamic control of body energy homeostasis bioinformatic tools were applied. Analysis of the presence of structural features characteristic for secretory peptides was used as a first step in the identification of novel neuropeptides, and was followed by analysis of expression patterns. The gene product previously named TAFA5 was identified during this process. The overall mRNA expression pattern of TAFA5 was assessed using quantitative PCR on rat cDNA libraries. Furthermore, the brain mRNA and polypeptide expression patterns were examined in rats using in situ hybridization and immunohistochemistry. Our results substantiate previous findings that TAFA5 is mainly expressed in the central nervous system. Furthermore, we found TAFA5 mRNA to be highly expressed in the hypothalamic paraventricular nucleus (PVN) where it co-localized with vasopressin and oxytocin in magno- and parvocellular neurons. Immunohistochemical analysis revealed TAFA5 immunoreactivity in the PVN in accordance with the in situ hybridization data. Given the high levels of expression in the PVN, it was investigated whether TAFA5 mRNA levels were affected by fasting or dehydration. Interestingly, it was observed that TAFA5 mRNA was specifically down-regulated in the PVN following water deprivation. Based on our findings we suggest that TAFA5 may be involved in the regulation of fluid homeostasis.

Collaboration


Dive into the Sarah Juel Paulsen's collaboration.

Top Co-Authors

Avatar

Niels Vrang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jacob Jelsing

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Leif Kongskov Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Secher

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry E. Levin

Veterans Health Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge