Nigel Hodson
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nigel Hodson.
Biomaterials | 2009
Mi Zhou; Andrew M. Smith; Apurba K. Das; Nigel Hodson; Richard F. Collins; Rein V. Ulijn; Julie E. Gough
We report here the design of a biomimetic nanofibrous hydrogel as a 3D-scaffold for anchorage-dependent cells. The peptide-based bioactive hydrogel is formed through molecular self-assembly and the building blocks are a mixture of two aromatic short peptide derivatives: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartate) as the simplest self-assembling moieties reported so far for the construction of small-molecule-based bioactive hydrogels. This hydrogel provides a highly hydrated, stiff and nanofibrous hydrogel network that uniquely presents bioactive ligands at the fibre surface; therefore it mimics certain essential features of the extracellular matrix. The RGD sequence as part of the Fmoc-RGD building block plays a dual role of a structural component and a biological ligand. Spectroscopic and imaging analysis using CD, FTIR, fluorescence, TEM and AFM confirmed that FF and RGD peptide sequences self-assemble into beta-sheets interlocked by pi-pi stacking of the Fmoc groups. This generates the cylindrical nanofibres interwoven within the hydrogel with the presence of RGDs in tunable densities on the fibre surfaces. This rapid gelling material was observed to promote adhesion of encapsulated dermal fibroblasts through specific RGD-integrin binding, with subsequent cell spreading and proliferation; therefore it may offer an economical model scaffold to 3D-culture other anchorage-dependent cells for in-vitro tissue regeneration.
Nature Nanotechnology | 2009
Richard J. Williams; Andrew M. Smith; Richard F. Collins; Nigel Hodson; Apurba K. Das; Rein V. Ulijn
The production of functional molecular architectures through self-assembly is commonplace in biology, but despite advances, it is still a major challenge to achieve similar complexity in the laboratory. Self-assembled structures that are reproducible and virtually defect free are of interest for applications in three-dimensional cell culture, templating, biosensing and supramolecular electronics. Here, we report the use of reversible enzyme-catalysed reactions to drive self-assembly. In this approach, the self-assembly of aromatic short peptide derivatives provides a driving force that enables a protease enzyme to produce building blocks in a reversible and spatially confined manner. We demonstrate that this system combines three features: (i) self-correction--fully reversible self-assembly under thermodynamic control; (ii) component-selection--the ability to amplify the most stable molecular self-assembly structures in dynamic combinatorial libraries; and (iii) spatiotemporal confinement of nucleation and structure growth. Enzyme-assisted self-assembly therefore provides control in bottom-up fabrication of nanomaterials that could ultimately lead to functional nanostructures with enhanced complexities and fewer defects.
Nature Chemistry | 2010
Andrew R. Hirst; Sangita Roy; Meenakshi Arora; Apurba K. Das; Nigel Hodson; Paul Murray; Stephen Marshall; Nadeem Javid; Jan Sefcik; Job Boekhoven; Jan H. van Esch; Stefano Santabarbara; Neil T. Hunt; Rein V. Ulijn
Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure. Supramolecular gels show promise in diverse areas, including healthcare and energy technologies, owing to tunable properties that arise directly from the organization of their building blocks. Researchers have now been able to control this behaviour by combining enzymatic catalysis with molecular self-assembly. Although it seems counter-intuitive, gels that assembled faster showed fewer defects.
Acta Biomaterialia | 2009
Vineetha Jayawarna; Stephen M. Richardson; Andrew R. Hirst; Nigel Hodson; Alberto Saiani; Julie E. Gough; Rein V. Ulijn
Aromatic short peptide derivatives, i.e. peptides modified with aromatic groups such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into self-supporting hydrogels. These hydrogels have some similarities to extracellular matrices due to their high hydration, relative stiffness and nanofibrous architecture. We previously demonstrated that Fmoc-diphenylalanine (Fmoc-F(2)) provides a suitable matrix for two-dimensional (2D) or three-dimensional (3D) culture of primary bovine chondrocytes. In this paper we investigate whether the introduction of chemical functionality, such as NH(2), COOH or OH, enhances compatibility with different cell types. A series of hydrogel compositions consisting of combinations of Fmoc-F(2) and n-protected Fmoc amino acids, lysine (K, with side chain R=(CH(2))(4)NH(2)), glutamic acid (D, with side chain R=CH(2)COOH), and serine (S, with side chain R=CH(2)OH) were studied. All compositions produced fibrous scaffolds with fibre diameters in the range of 32-65 nm as assessed by cryo-scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy analysis suggested that peptide segments adopt a predominantly antiparallel beta-sheet conformation. Oscillatory rheology results show that all four hydrogels have mechanical profiles of soft viscoelastic materials with elastic moduli dependent on the chemical composition, ranging from 502 Pa (Fmoc-F(2)/D) to 21.2 KPa (Fmoc-F(2)). All gels supported the viability of bovine chondrocytes as assessed by a live-dead staining assay. Fmoc-F(2)/S and Fmoc-F(2)/D hydrogels in addition supported viability for human dermal fibroblasts (HDF) while Fmoc-F(2)/S hydrogel was the only gel type that supported viability for all three cell types tested. Fmoc-F(2)/S was therefore investigated further by studying cell proliferation, cytoskeletal organization and histological analysis in 2D culture. In addition, the Fmoc-F(2)/S gel was shown to support retention of cell morphology in 3D culture of bovine chondrocytes. These results demonstrate that introduction of chemical functionality into Fmoc-peptide scaffolds may provide gels with tunable chemical and mechanical properties for in vitro cell culture.
Soft Matter | 2009
Alberto Saiani; A. Mohammed; Henrich Frielinghaus; Richard F. Collins; Nigel Hodson; Cay M. Kielty; Michael J. Sherratt; Aline F. Miller
We have investigated the self-assembly and gelation properties of a set of four octa-peptides: AEAEAKAK, AEAKAEAK, FEFEFKFK and FEFKFEFK. The phenylalanine based peptides adopt β-sheet conformations in solution and the alanine based peptides form α-helices. No self-assembly in solution was observed for AEAKAEAK but AEAEAKAK was found to self-assemble forming thick, rigid fibres with a diameter of ∼6 nm. These fibres were composed of two fibrils aggregating side by side to form “pearl-necklace” morphologies. No gelation was observed for AEAEAKAK in the concentration range investigated (0 to 100 mg ml−1). In contrast, both phenylalanine based peptides were found to self-assemble in solution and to form hydrogels at an initial concentration of ∼8 mg ml−1. Similar morphologies were observed for both peptides corresponding to a relatively homogeneous dense network of semi-flexible fibres with a mesh size of ∼15 to 30 nm depending on the concentration. The fibre diameter was found to be ∼4 nm in good agreement with models found in the literature. TEM micrographs clearly showed that these fibres have a helicoidal or twisted structure. Comparison of TEM with AFM data highlighted the influence of substrate chemistry on the macromolecular assembly of small peptides. In contrast small angle neutron scattering (SANS) approaches, which allow for the probing of hydrogel morphology and structure without the need for sample preparation on solid substrates, provide vital data on hydrogel morphology in solution.
British Journal of Dermatology | 2008
A. J. Freemont; Judith A. Hoyland; P. Fielding; Nigel Hodson; M. I. V. Jayson
Summary Various parameters for assessing endothelial cell (EC) metabolism, including immunohistochemistry and adenosine uptake, have been compared in the clinically uninvolved skin of patients with diffuse systemic sclerosis (DSS), CREST, incomplete CREST syndrome (ICREST), primary Raynauds disease (1° RD) and normal controls. Evidence of platelet adhesion to EC, decreased EC storage of factor VIII‐related antigen, changes in EC morphology and decreased adenosine uptake by EC, were found in the dermal microvasculature of normal skin of patients with DSS, CREST and ICREST, but not in 1° RD. These data indicate that a generalized microvascular endothelial dysfunction is present in the skin of patients with the systemic forms of scleroderma.
Matrix Biology | 2010
Helen K. Graham; Nigel Hodson; Judith A. Hoyland; Sarah J. Millward-Sadler; David R. Garrod; Anthea Scothern; C.E.M. Griffiths; Rachel E.B. Watson; Thomas R. Cox; Janine T. Erler; Andrew W. Trafford; Michael J. Sherratt
Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae.
PLOS ONE | 2012
Sandra Strassburg; Nigel Hodson; Patrick Hill; Stephen M. Richardson; Judith A. Hoyland
Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.
PLOS ONE | 2014
Heather S. Davies; Paul D. A. Pudney; Pantelis Georgiades; Thomas A. Waigh; Nigel Hodson; Caroline Ridley; Ewan W. Blanch; David J. Thornton
The salivary mucins that include MUC5B (gel-forming) and MUC7 (non-gel-forming) are major contributors to the protective mucus barrier in the oral cavity, and it is possible that dietary components may influence barrier properties. We show how one dietary compound, the green tea polyphenol epigallocatechin gallate (EGCG), can substantially alter the properties of both the polymeric MUC5B network and monomeric MUC7. Using rate-zonal centrifugation, MUC5B in human whole saliva and MUC5B purified from saliva sedimented faster in the presence of EGCG. The faster sedimentation by EGCG was shown to be greater with increasing MUC5B concentration. Particle tracking microrheology was employed to determine the viscosity of purified MUC5B solutions and showed that for MUC5B solutions of 200–1600 µg/mL, EGCG caused a significant increase in mucin viscosity, which was greater at higher MUC5B concentrations. Visualisation of the changes to the MUC5B network by EGCG was performed using atomic force microscopy, which demonstrated increased aggregation of MUC5B in a heterogeneous manner by EGCG. Using trypsin-resistant, high-molecular weight oligosaccharide-rich regions of MUC5B and recombinant N-terminal and C-terminal MUC5B proteins, we showed that EGCG causes aggregation at the protein domains of MUC5B, but not at the oligosaccharide-rich regions of the mucin. We also demonstrated that EGCG caused the majority of MUC7 in human whole saliva to aggregate. Furthermore, purified MUC7 also underwent a large increase in sedimentation rate in the presence of EGCG. In contrast, the green tea polyphenol epicatechin caused no change in the sedimentation rate of either MUC5B or MUC7 in human whole saliva. These findings have demonstrated how the properties of the mucin barrier can be influenced by dietary components. In the case of EGCG, these interactions may alter the function of MUC5B as a lubricant, contributing to the astringency (dry puckering sensation) of green tea.
Langmuir | 2016
Mohamed A. Elsawy; Andrew M. Smith; Nigel Hodson; Adam M. Squires; Aline F. Miller; Alberto Saiani
β-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended β-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity).