Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikhil Tyagi is active.

Publication


Featured researches published by Nikhil Tyagi.


British Journal of Cancer | 2015

MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways.

Sanjeev K. Srivastava; Arun Bhardwaj; Sumit Arora; Nikhil Tyagi; Seema Singh; Joel Andrews; Steve McClellan; Bin Wang; Ajay P. Singh

Background:Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored.Methods:miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay.Results:miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells.Conclusions:miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis.

Sumit Arora; Nikhil Tyagi; Arun Bhardwaj; Lilia Rusu; Rohan Palanki; Komal Vig; Shree Ram Singh; Ajay P. Singh; Srinivas Palanki; Michael Miller; James E. Carter; Seema Singh

UNLABELLED Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


Cancer Letters | 2016

p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling

Nikhil Tyagi; Saravanakumar Marimuthu; Arun Bhardwaj; Sachin K. Deshmukh; Sanjeev K. Srivastava; Ajay P. Singh; Steven McClellan; James E. Carter; Seema Singh

Pancreatic cancer (PC) remains a highly lethal malignancy due to its unusual chemoresistance and high aggressiveness. A subpopulation of pancreatic tumor cells, known as cancer stem cells (CSCs), is considered responsible not only for tumor-maintenance, but also for its widespread metastasis and therapeutic failure. Here we investigated the role of p-21 activated kinase 4 (PAK4) in driving PC stemness properties. Our data demonstrate that triple-positive (CD24+/CD44+/EpCAM+) subpopulation of pancreatic CSCs exhibits greater level of PAK4 as compared to triple-negative (CD24−/CD44−/EpCAM−) cells. Moreover, PAK4 silencing in PC cells leads to diminished fraction of CD24, CD44, and EpCAM positive cells. Furthermore, we show that PAK4-silenced PC cells exhibit decreased sphere-forming ability and increased chemo-sensitivity to gemcitabine toxicity. PAK4 expression is also associated with enhanced levels of stemness-associated transcription factors (Oct4/Nanog/Sox2 and KLF4). Furthermore, our data show decreased nuclear accumulation and transcriptional activity of STAT3 in PAK4-silenced PC cells and restitution of its activity leads to restoration of stem cell phenotypes. Together, our findings deliver first experimental evidence for the involvement of PAK4 in PC stemness and support its clinical utility as a novel therapeutic target in PC.


Tumor Biology | 2015

Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances

Nikhil Tyagi; Monika Tyagi; Manendra Pachauri; Prahlad C. Ghosh

Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.


British Journal of Cancer | 2015

Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis

Sanjeev K. Srivastava; Arun Bhardwaj; Sumit Arora; Nikhil Tyagi; Ajay P. Singh; James E. Carter; Jonathan G. Scammell; Øystein Fodstad; Seema Singh

Background:FKBP51 is overexpressed in melanoma and impacts tumour cell properties. However, its comprehensive role in melanoma pathogenesis and underlying mechanism(s) remain elusive.Methods:FKBP51 was stably silenced in aggressive melanoma cell lines and its effect examined in vitro and in mouse model. Histological/immunohistochemical analyses were performed to confirm metastasis, angiogenesis and neutrophil infiltration. Gene expression was analyzed by qRT–PCR, immunoblot and/or ELISA. NF-κB transcriptional activity and promoter binding were monitored by luciferase-based promoter-reporter and ChIP assays, respectively. Interleukin (IL)-8 inhibition was achieved by gene silencing or neutralising-antibody treatment.Results:FKBP51 silencing reduced melanoma growth, metastasis, angiogenesis and neutrophil infiltration and led to IL-8 downregulation through NF-κB suppression in cell lines and tumour xenografts. IL-8 inhibition drastically decreased growth, migration and invasiveness of FKPB51-overexpressing cells; whereas its treatment partially restored the suppressed phenotypes of FKBP51-silenced melanoma cells. Interleukin-8 depletion in conditioned medium (CM) of FKBP51-overexpressing melanoma cells inhibited endothelial cell proliferation and capillary-like structure formation, whereas its treatment promoted these effects in endothelial cells cultured in CM of FKBP51-silenced melanoma cells.Conclusions:FKBP51 promotes melanoma growth, metastasis and angiogenesis, and IL-8 plays a key role in these processes. Thus, targeting of FKBP51 or its upstream or downstream regulatory pathways could lead to effective therapeutic strategies against melanoma.


Cancer Letters | 2016

Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis

Nikhil Tyagi; Sanjeev K. Srivastava; Sumit Arora; Yousef Omar; Zohaib Mohammad Ijaz; Ahmed Al-Ghadhban; Sachin K. Deshmukh; James E. Carter; Ajay P. Singh; Seema Singh

Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs.


Scientific Reports | 2015

Development and Characterization of a Novel in vitro Progression Model for UVB-Induced Skin Carcinogenesis

Nikhil Tyagi; Arun Bhardwaj; Sanjeev K. Srivastava; Sumit Arora; Saravanakumar Marimuthu; Sachin K. Deshmukh; Ajay P. Singh; James E. Carter; Seema Singh

Epidemiological studies suggest ultraviolet B (UVB) component (290–320 nm) of sun light is the most prevalent etiologic factor for skin carcinogenesis- a disease accounting for more than two million new cases each year in the USA alone. Development of UVB-induced skin carcinoma is a multistep and complex process. The molecular events that occur during UVB-induced skin carcinogenesis are poorly understood largely due to the lack of an appropriate cellular model system. Therefore, to make a progress in this area, we have developed an in vitro model for UVB-induced skin cancer using immortalized human epidermal keratinocyte (HaCaT) cells through repetitive exposure to UVB radiation. We demonstrate that UVB-transformed HaCaT cells gain enhanced proliferation rate, apoptosis-resistance, and colony- and sphere-forming abilities in a progressive manner. Moreover, these cells exhibit increased aggressiveness with enhanced migration and invasive potential and mesenchymal phenotypes. Furthermore, these derived cells are able to form aggressive squamous cell carcinoma upon inoculation into the nude mice, while parental HaCaT cells remain non-tumorigenic. Together, these novel, UVB-transformed progression model cell lines can be very helpful in gaining valuable mechanistic insight into UVB-induced skin carcinogenesis, identification of novel molecular targets of diagnostic and therapeutic significance, and in vitro screening for novel preventive and therapeutic agents.


British Journal of Cancer | 2015

MYB is a novel regulator of pancreatic tumour growth and metastasis.

Sanjeev K. Srivastava; Arun Bhardwaj; Sumit Arora; Seema Singh; Shafquat Azim; Nikhil Tyagi; James E. Carter; Bin Wang; Ajay P. Singh

Background:MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far.Methods:Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden’s chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice.Results:MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis.Conclusions:MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.


Cancer Letters | 2017

Resistin potentiates chemoresistance and stemness of breast cancer cells: Implications for racially disparate therapeutic outcomes

Sachin K. Deshmukh; Sanjeev K. Srivastava; Haseeb Zubair; Arun Bhardwaj; Nikhil Tyagi; Ahmed Al-Ghadhban; Ajay P. Singh; Donna Lynn Dyess; James E. Carter; Seema Singh

Breast cancer (BC) continues to be the most frequently diagnosed cancer in American women, which disproportionately affects women of African-American (AA) descent. Previously, we reported greater serum levels of resistin in AA BC patients relative to Caucasian-American (CA) patients, and established its role in growth and aggressiveness of breast tumor cells. Here we have investigated the role of resistin in BC-chemoresistance. MDA-MB-231 and MDA-MB-468 BC cells of CA and AA origin, respectively, were incubated with resistin prior to doxorubicin treatment. Our data suggest that resistin conferred chemoresistance to both BC cell lines; however, the effect on AA cells was more profound. Furthermore, the resistin-induced doxorubicin-resistance was shown to occur due to suppression of apoptosis. Resistin treatment also affected the stemness of BC cells, as suggested by reduced cell surface expression of CD24, induced expression of CD44 and ALDH1, and increased capability of cells to form mammospheres. Mechanistic studies revealed that resistin-induced chemoresistance, apoptosis and stemness of BC cells were mediated through STAT3 activation. Taken together, our findings provide novel insight into the role of resistin in BC biology, and strengthen its role in racially disparate clinical outcomes.


Journal of Biological Chemistry | 2016

MYB Promotes Desmoplasia in Pancreatic Cancer through Direct Transcriptional Up-regulation and Cooperative Action of Sonic Hedgehog and Adrenomedullin.

Arun Bhardwaj; Sanjeev K. Srivastava; Seema Singh; Nikhil Tyagi; Sumit Arora; James E. Carter; Moh'd M. Khushman; Ajay P. Singh

Extensive desmoplasia is a prominent pathological characteristic of pancreatic cancer (PC) that not only impacts tumor development, but therapeutic outcome as well. Recently, we demonstrated a novel role of MYB, an oncogenic transcription factor, in PC growth and metastasis. Here we studied its effect on pancreatic tumor histopathology and associated molecular and biological mechanisms. Tumor-xenografts derived from orthotopic-inoculation of MYB-overexpressing PC cells exhibited far-greater desmoplasia in histological analyses compared with those derived from MYB-silenced PC cells. These findings were further confirmed by immunostaining of tumor-xenograft sections with collagen-I, fibronectin (major extracellular-matrix proteins), and α-SMA (well-characterized marker of myofibroblasts or activated pancreatic stellate cells (PSCs)). Likewise, MYB-overexpressing PC cells provided significantly greater growth benefit to PSCs in a co-culture system as compared with the MYB-silenced cells. Interrogation of deep-sequencing data from MYB-overexpressing versus -silenced PC cells identified Sonic-hedgehog (SHH) and Adrenomedullin (ADM) as two differentially-expressed genes among others, which encode for secretory ligands involved in tumor-stromal cross-talk. In-silico analyses predicted putative MYB-binding sites in SHH and ADM promoters, which was later confirmed by chromatin-immunoprecipitation. A cooperative role of SHH and ADM in growth promotion of PSCs was confirmed in co-culture by using their specific-inhibitors and exogenous recombinant-proteins. Importantly, while SHH acted exclusively in a paracrine fashion on PSCs and influenced the growth of PC cells only indirectly, ADM could directly impact the growth of both PC cells and PSCs. In summary, we identified MYB as novel regulator of pancreatic tumor desmoplasia, which is suggestive of its diverse roles in PC pathobiology.

Collaboration


Dive into the Nikhil Tyagi's collaboration.

Top Co-Authors

Avatar

Ajay P. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Seema Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

James E. Carter

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumit Arora

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Sachin K. Deshmukh

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Arun Bhardwaj

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arun Bhardwaj

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ahmed Al-Ghadhban

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge