Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolas Nikolaidis is active.

Publication


Featured researches published by Nikolas Nikolaidis.


Cell | 2005

Control of cell proliferation and apoptosis by Mob as tumor suppressor, Mats

Zhi-Chun Lai; Xiaomu Wei; Takeshi Shimizu; Edward Ramos; Margaret Rohrbaugh; Nikolas Nikolaidis; Li-Lun Ho; Ying Li

Appropriate cell number and organ size in a multicellular organism are determined by coordinated cell growth, proliferation, and apoptosis. Disruption of these processes can cause cancer. Recent studies have identified the Large tumor suppressor (Lats)/Warts (Wts) protein kinase as a key component of a pathway that controls the coordination between cell proliferation and apoptosis. Here we describe growth inhibitory functions for a Mob superfamily protein, termed Mats (Mob as tumor suppressor), in Drosophila. Loss of Mats function results in increased cell proliferation, defective apoptosis, and induction of tissue overgrowth. We show that mats and wts function in a common pathway. Mats physically associates with Wts to stimulate the catalytic activity of the Wts kinase. A human Mats ortholog (Mats1) can rescue the lethality associated with loss of Mats function in Drosophila. As Mats1 is mutated in human tumors, Mats-mediated growth inhibition and tumor suppression is likely conserved in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization

Frédéric Kerff; Ana Maria Amoroso; Raphaël Herman; Eric Sauvage; Stephanie Petrella; Patrice Filée; Paulette Charlier; Bernard Joris; Akira Tabuchi; Nikolas Nikolaidis; Daniel J. Cosgrove

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant β-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-ψ β-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant β-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant–bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.


Journal of Biological Chemistry | 2011

Structure-Function Analysis of the Bacterial Expansin EXLX1

Nikolaos Georgelis; Akira Tabuchi; Nikolas Nikolaidis; Daniel J. Cosgrove

We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.


Molecular Biology and Evolution | 2013

One Hundred Twenty Years of Koala Retrovirus Evolution Determined from Museum Skins

María C. Ávila-Arcos; Simon Y. W. Ho; Yasuko Ishida; Nikolas Nikolaidis; Kyriakos Tsangaras; Karin Hönig; Rebeca Medina; Morten Rasmussen; Sarah L. Fordyce; Sébastien Calvignac-Spencer; M. Thomas P. Gilbert; Kristofer M. Helgen; Alfred L. Roca; Alex D. Greenwood

Although endogenous retroviruses are common across vertebrate genomes, the koala retrovirus (KoRV) is the only retrovirus known to be currently invading the germ line of its host. KoRV is believed to have first infected koalas in northern Australia less than two centuries ago. We examined KoRV in 28 koala museum skins collected in the late 19th and 20th centuries and deep sequenced the complete proviral envelope region from five northern Australian specimens. Strikingly, KoRV env sequences were conserved among koalas collected over the span of a century, and two functional motifs that affect viral infectivity were fixed across the museum koala specimens. We detected only 20 env polymorphisms among the koalas, likely representing derived mutations subject to purifying selection. Among northern Australian koalas, KoRV was already ubiquitous by the late 19th century, suggesting that KoRV evolved and spread among koala populations more slowly than previously believed. Given that museum and modern koalas share nearly identical KoRV sequences, it is likely that koala populations, for more than a century, have experienced increased susceptibility to diseases caused by viral pathogenesis.


Molecular Biology and Evolution | 2014

Plant Expansins in Bacteria and Fungi: Evolution by Horizontal Gene Transfer and Independent Domain Fusion

Nikolas Nikolaidis; Nicole Doran; Daniel J. Cosgrove

Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Evolutionary redefinition of immunoglobulin light chain isotypes in tetrapods using molecular markers

Sabyasachi Das; Nikolas Nikolaidis; Jan Klein; Masatoshi Nei

The phylogenetic relationships of Ig light chain (IGL) genes are difficult to resolve, because these genes are short and evolve relatively fast. Here, we classify the IGL sequences from 12 tetrapod species into three distinct groups (κ, λ, and σ isotypes) using conserved amino acid residues, recombination signal sequences, and genomic organization of IGL genes as cladistic markers. From the distribution of the markers we conclude that the earliest extant tetrapods, the amphibians, possess three IGL isotypes: κ, λ, and σ. Of these, two (κ and λ) are also found in reptiles and some mammals. The λ isotype is found in all tetrapods tested to date, whereas the κ isotype seems to have been lost at least in some birds and in the microbat. Conservation of the cladistic molecular markers suggests that they are associated with functional specialization of the three IGL isotypes. The genomic maps of IGL loci reveal multiple gene rearrangements that occurred in the evolution of tetrapod species. These rearrangements have resulted in interspecific variation of the genomic lengths of the IGL loci and the number and order of IGL constituent genes, but the overall organization of the IGL loci has not changed.


Molecular Biology and Evolution | 2008

Origins and Evolution of the Formin Multigene Family That Is Involved in the Formation of Actin Filaments

Dimitra Chalkia; Nikolas Nikolaidis; Wojciech Makalowski; Jan Klein; Masatoshi Nei

In eukaryotes, the assembly and elongation of unbranched actin filaments is controlled by formins, which are long, multidomain proteins. These proteins are important for dynamic cellular processes such as determination of cell shape, cell division, and cellular interaction. Yet, no comprehensive study has been done about the origins and evolution of this gene family. We therefore performed extensive phylogenetic and motif analyses of the formin genes by examining 597 prokaryotic and 53 eukaryotic genomes. Additionally, we used three-dimensional protein structure data in an effort to uncover distantly related sequences. Our results suggest that the formin homology 2 (FH2) domain, which promotes the formation of actin filaments, is a eukaryotic innovation and apparently originated only once in eukaryotic evolution. Despite the high degree of FH2 domain sequence divergence, the FH2 domains of most eukaryotic formins are predicted to assume the same fold and thus have similar functions. The formin genes have experienced multiple taxon-specific duplications and followed the birth-and-death model of evolution. Additionally, the formin genes experienced taxon-specific genomic rearrangements that led to the acquisition of unrelated protein domains. The evolutionary diversification of formin genes apparently increased the number of formins interacting molecules and consequently contributed to the development of a complex and precise actin assembly mechanism. The diversity of formin types is probably related to the range of actin-based cellular processes that different cells or organisms require. Our results indicate the importance of gene duplication and domain acquisition in the evolution of the eukaryotic cell and offer insights into how a complex system, such as the cytoskeleton, evolved.


Frontiers in Microbiology | 2013

Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm

María Soledad Ramírez; Nikolas Nikolaidis; Marcelo E. Tolmasky

Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme is of interest not only because of his ubiquity but also because of other characteristics, it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in spite of not having identical amino acid sequence. While some variants conserved similar properties, others show dramatic differences in specificity, including the case of AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where a resistance enzyme acquires the ability to utilize an antibiotic of a different class as substrate. Efforts to utilize antisense technologies to turn off expression of the gene or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are under way.


Carbohydrate Polymers | 2014

Biochemical analysis of expansin-like proteins from microbes

Nikolaos Georgelis; Nikolas Nikolaidis; Daniel J. Cosgrove

Expansins cause plant cell wall loosening and are present primarily in the plant kingdom. Gene sequence analysis suggests that expansins are present in several plant-colonizing or plant-pathogenic bacteria and fungi. However, experimental evidence of microbial expansin activity is largely lacking. Here we provide evidence that expansins from three plant pathogenic bacteria and one fungus cause extension of cell walls in vitro and weaken filter paper networks, without lytic activity. Since expansins were able to weaken cellulose networks, we tested whether they synergistically enhanced the activity of several cellulases in hydrolysis of cellulose. The microbial expansins did not show such synergism beyond the nonspecific effect of bovine serum albumin. Our results show that the expansins present in several pathogenic microbes have weak wall-loosening activity and we infer a role for these expansins in plant pathogenesis. Additionally, the convenient expression of several expansins in Escherichia coli makes a future comparative structure-function analysis among expansins possible in order to understand their activity at the molecular level.


Immunogenetics | 2005

Origin and evolution of the Ig-like domains present in mammalian leukocyte receptors: insights from chicken, frog, and fish homologues

Nikolas Nikolaidis; Jan Klein; Masatoshi Nei

In mammals many natural killer (NK) cell receptors, encoded by the leukocyte receptor complex (LRC), regulate the cytotoxic activity of NK cells and provide protection against virus-infected and tumor cells. To investigate the origin of the Ig-like domains encoded by the LRC genes, a subset of C2-type Ig-like domain sequences was compiled from mammals, birds, amphibians, and fish. Phylogenetic analysis of these sequences generated seven monophyletic groups in mammals (MI, MII, and FcI, FcIIa, FcIIb, FcIII, FcIV), two in chicken (CI, CII), four in frog (FI–FIV), and five in zebrafish (ZI–ZV). The analysis of the major groups supported the following order of divergence: ZI [or a common ancestor of ZI and F (a cluster composed of the FcIII and FIII groups)], F, CII (or a common ancestor of CII and MII), MII, and MI–CI. The relationships of the remaining groups were unclear, since the phylogenetic positions of these groups were not supported by high bootstrap values. Two main conclusions can be drawn from this analysis. First, the two groups of mammalian LRC sequences must diverged before the separation of the avian and mammalian lineages. Second, the mammalian LRC sequences are most closely related to the Fc receptor sequences and these two groups diverged before the separation of birds and mammals.

Collaboration


Dive into the Nikolas Nikolaidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masatoshi Nei

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Brianna Kdeiss

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zacharias G. Scouras

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Cosgrove

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dimitra Chalkia

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kostas Fokas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Vasilis P. Bozikas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge