Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nilima Biswas is active.

Publication


Featured researches published by Nilima Biswas.


JAMA Psychiatry | 2014

Assessment of Plasma C-Reactive Protein as a Biomarker of Posttraumatic Stress Disorder Risk

Satish A. Eraly; Caroline M. Nievergelt; Adam X. Maihofer; Donald A. Barkauskas; Nilima Biswas; Agorastos Agorastos; Daniel T. O’Connor; Dewleen G. Baker

IMPORTANCE Posttraumatic stress disorder (PTSD) has been associated in cross-sectional studies with peripheral inflammation. It is not known whether this observed association is the result of PTSD predisposing to inflammation (as sometimes postulated) or to inflammation predisposing to PTSD. OBJECTIVE To determine whether plasma concentration of the inflammatory marker C-reactive protein (CRP) helps predict PTSD symptoms. DESIGN, SETTING, AND PARTICIPANTS The Marine Resiliency Study, a prospective study of approximately 2600 war zone-deployed Marines, evaluated PTSD symptoms and various physiological and psychological parameters before deployment and at approximately 3 and 6 months following a 7-month deployment. Participants were recruited from 4 all-male infantry battalions imminently deploying to a war zone. Participation was requested of 2978 individuals; 2610 people (87.6%) consented and 2555 (85.8%) were included in the present analysis. Postdeployment data on combat-related trauma were included for 2208 participants (86.4% of the 2555 included) and on PTSD symptoms at 3 and 6 months after deployment for 1861 (72.8%) and 1617 (63.3%) participants, respectively. MAIN OUTCOMES AND MEASURES Severity of PTSD symptoms 3 months after deployment assessed by the Clinician-Administered PTSD Scale (CAPS). RESULTS We determined the effects of baseline plasma CRP concentration on postdeployment CAPS using zero-inflated negative binomial regression (ZINBR), a procedure designed for distributions, such as CAPS in this study, that have an excess of zeroes in addition to being positively skewed. Adjusting for the baseline CAPS score, trauma exposure, and other relevant covariates, we found baseline plasma CRP concentration to be a highly significant overall predictor of postdeployment CAPS scores (P = .002): each 10-fold increment in CRP concentration was associated with an odds ratio of nonzero outcome (presence vs absence of any PTSD symptoms) of 1.51 (95% CI, 1.15-1.97; P = .003) and a fold increase in outcome with a nonzero value (extent of symptoms when present) of 1.06 (95% CI, 0.99-1.14; P = .09). CONCLUSIONS AND RELEVANCE A marker of peripheral inflammation, plasma CRP may be prospectively associated with PTSD symptom emergence, suggesting that inflammation may predispose to PTSD.


Journal of Biological Chemistry | 2009

A Novel Pathway of Insulin Sensitivity in Chromogranin A Null Mice A CRUCIAL ROLE FOR PANCREASTATIN IN GLUCOSE HOMEOSTASIS

Jiaur R. Gayen; Maziyar Saberi; Simon Schenk; Nilima Biswas; Sucheta M. Vaingankar; Wai W. Cheung; Sonia M. Najjar; Daniel T. O'Connor; Gautam Bandyopadhyay; Sushil K. Mahata

Chromogranin A (CHGA/Chga), a proprotein, widely distributed in endocrine and neuroendocrine tissues (not expressed in muscle, liver, and adipose tissues), generates at least four bioactive peptides. One of those peptides, pancreastatin (PST), has been reported to interfere with insulin action. We generated a Chga knock-out (KO) mouse by the targeted deletion of the Chga gene in neuroendocrine tissues. KO mice displayed hypertension, higher plasma catecholamine, and adipokine levels and lower IL-6 and lipid levels compared with wild type mice. Liver glycogen content was elevated, but the nitric oxide (NO) level was diminished. Glucose, insulin, and pyruvate tolerance tests and hyperinsulinemic-euglycemic clamp studies established increased insulin sensitivity in liver but decreased glucose disposal in muscle. Despite higher catecholamine and ketone body levels and muscle insulin resistance, KO mice maintained euglycemia due to increased liver insulin sensitivity. Suppressed mRNA abundance of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) in KO mice further support this conclusion. PST administration in KO mice stimulated phosphoenolpyruvate carboxykinase and G6Pase mRNA abundance and raised the blood glucose level. In liver cells transfected with G6Pase promoter, PST caused transcriptional activation in a protein kinase C (PKC)- and NO synthase-dependent manner. Thus, PST action may be mediated by suppressing IRS1/2-phosphatidylinositol 3-kinase-Akt-FOXO-1 signaling and insulin-induced maturation of SREBP1c by PKC and a high level of NO. The combined effects of conventional PKC and endothelial NO synthase activation by PST can suppress insulin signaling. The rise in blood PST level with age and in diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.


Endocrinology | 2009

Cathepsin L Colocalizes with Chromogranin A in Chromaffin Vesicles to Generate Active Peptides

Nilima Biswas; Juan L. Rodriguez-Flores; Maïté Courel; Jiaur R. Gayen; Sucheta M. Vaingankar; Manjula Mahata; Justin W. Torpey; Laurent Taupenot; Daniel T. O'Connor; Sushil K. Mahata

Chromogranin A (CgA), the major soluble protein in chromaffin granules, is proteolytically processed to generate biologically active peptides including the catecholamine release inhibitory peptide catestatin. Here we sought to determine whether cysteine protease cathepsin L (CTSL), a novel enzyme for proteolytic processing of neuropeptides, acts like the well-established serine proteases [prohormone convertase (PC)1/3 or PC2] to generate catestatin by proteolytic processing of CgA. We found that endogenous CTSL colocalizes with CgA in the secretory vesicles of primary rat chromaffin cells. Transfection of PC12 cells with an expression plasmid encoding CTSL directed expression of CTSL toward secretory vesicles. Deconvolution fluorescence microscopy suggested greater colocalization of CTSL with CgA than the lysosomal marker LGP110. The overexpression of CTSL in PC12 cells caused cleavage of full-length CgA. CTSL also cleaved CgA in vitro, in time- and dose-dependent fashion, and specificity of the process was documented through E64 (thiol reagent) inhibition. Mass spectrometry on CTSL-digested recombinant CgA identified a catestatin-region peptide, corresponding to CgA(360-373). The pool of peptides generated from the CTSL cleavage of CgA inhibited nicotine-induced catecholamine secretion from PC12 cells. CTSL processing in the catestatin region was diminished by naturally occurring catestatin variants, especially Pro370Leu and Gly364Ser. Among the CTSL-generated peptides, a subset matched those found in the catestatin region in vivo. These findings indicate that CgA can be a substrate for the cysteine protease CTSL both in vitro and in cella, and their colocalization within chromaffin granules in cella suggests the likelihood of an enzyme/substrate relationship in vivo.


Journal of Biological Chemistry | 1999

A mutation in the C-terminal putative Zn2+ finger motif of UL52 severely affects the biochemical activities of the HSV-1 helicase-primase subcomplex.

Nilima Biswas; Sandra K. Weller

Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex that is composed of the products of the UL5, UL52, and UL8genes. A subcomplex consisting of the UL5 and UL52 proteins retains all the enzymatic activities exhibited by the holoenzyme in vitro. The UL52 protein contains a putative zinc finger at its C terminus which is highly conserved among both prokaryotic and eukaryotic primases. We constructed a mutation in which two highly conserved cysteine residues in the zinc finger motif were replaced with alanine residues. A UL52 expression plasmid containing the mutation in the zinc finger region is unable to support the growth of aUL52 mutant virus in a transient complementation assay. Wild type and mutant UL5·UL52 subcomplexes were purified from insect cells infected with recombinant baculoviruses. Surprisingly, the mutant protein was severely affected in all biochemical activities tested; no helicase or primase activities could be detected, and the mutant protein retains only about 9% of wild type levels of single-stranded DNA-dependent ATPase activity. Gel mobility shift assays showed that DNA binding is severely affected as well; the mutant subcomplex only retains approximately 8% of wild type levels of binding to a forked substrate. On the other hand, the mutant protein retains its ability to interact with UL5 as indicated by copurification and with UL8 as indicated by a supershifted band in the gel mobility shift assay. In addition, the ability of individual subunits to bind single-stranded DNA was examined by photo cross-linking. In the wild type UL5·UL52 subcomplex, both subunits are able to bind an 18-mer of oligo(dT). The mutant subcomplex was severely compromised in the ability of both UL5 and UL52 to bind the oligonucleotide; total cross-linking was only 2% of wild type levels. These results are consistent with the proposal that the putative zinc binding motif of UL52 is required not only for binding of the UL52 subunit to DNA and for primase activity but also for optimal binding of UL5 to DNA and for the subsequent ATPase and helicase activities.


Journal of Biological Chemistry | 2012

Catestatin (Chromogranin A352–372) and Novel Effects on Mobilization of Fat from Adipose Tissue through Regulation of Adrenergic and Leptin Signaling

Gautam Bandyopadhyay; Christine U. Vu; Stefano Gentile; Howon Lee; Nilima Biswas; Nai-Wen Chi; Daniel T. O'Connor; Sushil K. Mahata

Background: Mice lacking the neurosecretory protein Chromogranin A are obese, presumably because of resistance to catecholamines and leptin. Results: Catestatin (CST) reduces adiposity, an effect likely mediated by restoring leptin sensitivity and modulating adrenergic signaling. Conclusion: CST promotes lipolysis by blocking α-AR signaling and stimulating fatty acid oxidation. Significance: We propose CST as a candidate antiobesity agent. Chromogranin A knock-out (Chga-KO) mice display increased adiposity despite high levels of circulating catecholamines and leptin. Consistent with diet-induced obese mice, desensitization of leptin receptors caused by hyperleptinemia is believed to contribute to the obese phenotype of these KO mice. In contrast, obesity in ob/ob mice is caused by leptin deficiency. To characterize the metabolic phenotype, Chga-KO mice were treated with the CHGA-derived peptide catestatin (CST) that is deficient in these mice. CST treatment reduced fat depot size and increased lipolysis and fatty acid oxidation. In liver, CST enhanced oxidation of fatty acids as well as their assimilation into lipids, effects that are attributable to the up-regulation of genes promoting fatty acid oxidation (Cpt1α, Pparα, Acox, and Ucp2) and incorporation into lipids (Gpat and CD36). CST did not affect basal or isoproterenol-stimulated cAMP production in adipocytes but inhibited phospholipase C activation by the α-adrenergic receptor (AR) agonist phenylephrine, suggesting inhibition of α-AR signaling by CST. Indeed, CST mimicked the lipolytic effect of the α-AR blocker phentolamine on adipocytes. Moreover, CST reversed the hyperleptinemia of Chga-KO mice and improved leptin signaling as determined by phosphorylation of AMPK and Stat3. CST also improved peripheral leptin sensitivity in diet-induced obese mice. In ob/ob mice, CST enhanced leptin-induced signaling in adipose tissue. In conclusion, our results implicate CST in a novel pathway that promotes lipolysis and fatty acid oxidation by blocking α-AR signaling as well as by enhancing leptin receptor signaling.


Cell and Tissue Research | 2010

Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga364–384)

Nilima Biswas; Erica Curello; Daniel T. O’Connor; Sushil K. Mahata

In the heart, the secretory granules containing the atrial natriuretic peptides (ANP) and B-type myocardial natriuretic peptide (BNP) provide the basis for the endocrine function of this organ. We sought to determine whether atrial and myocardial secretory granules contain chromogranin/secretogranin proteins including chromogranin A (CHGA/Chga), chromogranin B (CHGB/Chgb) and secretogranin II (SCG2/Scg2). Deconvolution microscopy on immunolabeled proteins revealed the presence of Chga, Chgb, and Scg2 in murine cardiac secretory granules. The presence of low plasma catestatin (CST: mChga364–384) in older mice indicates diminished processing of Chga to CST with advancement of age, which is comparable to that found in humans. We have previously shown that CST (hCHGA352–372) exerts potent cardio-suppressive effects on frog and rat heart, but the source of CST for such action has remained elusive. In the present study, we found CST-related peptides in cardiomyocytes and in heart, which establishes an autocrine/paracrine function of CST in cardiac tissue. We conclude that cardiac secretory granules contain Chga, Chgb and Scg2 and that Chga is processed to CST in murine heart.


Circulation-cardiovascular Genetics | 2011

A Common Genetic Variant in the 3-UTR of Vacuolar H-ATPase ATP6V0A1 Creates a Micro-RNA Motif to Alter Chromogranin A Processing and Hypertension Risk

Zhiyun Wei; Nilima Biswas; Lei Wang; Maïté Courel; Kuixing Zhang; Alex Soler-Jover; Laurent Taupenot; Daniel T. O'Connor

Background— The catecholamine release-inhibitor catestatin and its precursor chromogranin A (CHGA) may constitute “intermediate phenotypes” in the analysis of genetic risk for cardiovascular disease such as hypertension. Previously, the vacuolar H+-ATPase subunit gene ATP6V0A1 was found within the confidence interval for linkage with catestatin secretion in a genome-wide study, and its 3′-UTR polymorphism T+3246C (rs938671) was associated with both catestatin processing from CHGA and population blood pressure. We explored the molecular mechanism of this effect by experiments with transfected chimeric photoproteins in chromaffin cells. Methods and Results— Placing the ATP6V0A1 3′-UTR downstream of a luciferase reporter, we found that the C (variant) allele decreased overall gene expression. The 3′-UTR effect was verified by coupled in vitro transcription/translation of the entire/intact human ATP6V0A1 mRNA. Chromaffin granule pH, monitored by fluorescence of CHGA/EGFP chimera during vesicular H+-ATPase inhibition by bafilomycin A1, was more easily perturbed during coexpression of the ATP6V0A1 3′-UTR C-allele than the T-allele. After bafilomycin A1 treatment, the ratio of CHGA precursor to its catestatin fragments in PC12 cells was substantially diminished, though the qualitative composition of such fragments was not affected (on immunoblot or matrix-assisted laser desorption ionization (MALDI) mass spectrometry). Bafilomycin A1 treatment also decreased exocytotic secretion from the regulated pathway, monitored by a CHGA chimera tagged with embryonic alkaline phosphatase. 3′-UTR T+3246C created a binding motif for micro-RNA hsa-miR-637; cotransfection of hsa-miR-637 precursor or antagomir/inhibitor oligonucleotides yielded the predicted changes in expression of luciferase reporter/ATP6V0A1-3′-UTR plasmids varying at T+3246C. Conclusions— The results suggest a series of events whereby ATP6V0A1 3′-UTR variant T+3246C functioned: ATP6V0A1 expression probably was affected through differential micro-RNA effects, altering vacuolar pH and consequently CHGA processing and exocytotic secretion.


Journal of Hypertension | 2010

Effects of chromogranin A Deficiency and Excess in vivo: Biphasic Blood Pressure and Catecholamine Responses

Sucheta M. Vaingankar; Ying Li; Nilima Biswas; Jiaur R. Gayen; Sonia Choksi; Fangwen Rao; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Objective The phenotype of the chromogranin A (Chga) null (knockout) mouse is hypertensive. However, hypertensive humans and spontaneously hypertensive rats display elevated CHGA expression. This study addresses the paradox that both ablation and elevation of CHGA result in hypertension. Methods Mice with varying copy number of the CHGA gene were generated. In these mice CHGA, catecholamine and blood pressure (BP) were measured. Also a cohort of healthy human individuals was stratified into tertiles based on plasma CHGA expression and phenotyped for characteristics including their BP response to environmental (cold) stress. Results The mice displayed a direct CHGA gene dose-dependent (0–4 copies/genome) activation of CHGA expression in both plasma and adrenal gland, yet the BP dependence of CHGA gene dose was U-shaped, maximal at 0 and four copies of the gene, whereas minimal at two copies (i.e., the wild-type gene dosage). Plasma catecholamine showed a parallel U-shaped dose/response in mice, whereas adrenal epinephrine exhibited a reciprocal (inverted) U-shaped response, suggesting dysregulated neurotransmission at both extremes of CHGA expression. The human individuals also showed a nonlinear relationship between CHGA expression and pressor responses to environmental (cold) stress, that were maximal in the highest and lowest tertiles, though basal BPs did not differ among the groups. The human CHGA tertiles also differed in epinephrine secretion as well as degree of CHGA processing to catestatin (catecholamine release-inhibitory peptide derived from CHGA processing). Conclusion Thus, across mammalian species, an optimal amount of CHGA may be required to establish appropriate catecholamine storage and release, and hence BP homeostasis.


Journal of the American College of Cardiology | 2012

Neuropeptide Y (NPY): genetic variation in the human promoter alters glucocorticoid signaling, yielding increased NPY secretion and stress responses

Kuixing Zhang; Fangwen Rao; Jose Pablo Miramontes-Gonzalez; C. Makena Hightower; Brian Vaught; Yuhong Chen; Tiffany A. Greenwood; Andrew J. Schork; Lei Wang; Manjula Mahata; Mats Stridsberg; Srikrishna Khandrika; Nilima Biswas; Maple M. Fung; Jill Waalen; Rita P. S. Middelberg; Andrew C. Heath; Grant W. Montgomery; Nicholas G. Martin; John Whitfield; Dewleen G. Baker; Nicholas J. Schork; Caroline M. Nievergelt; Daniel T. O'Connor

OBJECTIVES This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. BACKGROUND The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. METHODS Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. RESULTS Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇-880Δ (2-bp TG/-, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h(2)) stress traits: higher NPY secretion (h(2) = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇-880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele -880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter -880Δ interrupts a novel glucocorticoid response element motif, an effect confirmed in chromaffin cells by site-directed mutagenesis on the transfected promoter, with differential glucocorticoid stimulation of the motif as well as alterations in electrophoretic mobility shifts. The same -880Δ allele also conferred risk for hypertension and accounted for approximately 4.5/approximately 2.1 mm Hg systolic BP/diastolic BP in a population sample from BP extremes. CONCLUSIONS We conclude that common genetic variation at the NPY locus, especially in proximal promoter ∇-880Δ, disrupts glucocorticoid signaling to influence NPY transcription and secretion, raising systemic vascular resistance and early heritable responses to environmental stress, eventuating in elevated resting BP in the population. The results point to new molecular strategies for probing autonomic control of the human circulation and ultimately susceptibility to and pathogenesis of cardiovascular and neuropsychiatric disease states.


Hypertension | 2012

Novel peptide isomer strategy for stable inhibition of catecholamine release: Application to hypertension

Nilima Biswas; Jiaur R. Gayen; Manjula Mahata; Ying Su; Sushil K. Mahata; Daniel T. O’Connor

Although hypertension remains the most potent and widespread cardiovascular risk factor, its pharmacological treatment has achieved only limited success. The chromogranin A–derived fragment catestatin inhibits catecholamine release by acting as an endogenous nicotinic cholinergic antagonist and can rescue hypertension in the setting of chromogranin A–targeted ablation. Here, we undertook novel peptide chemistry to synthesize isomers of catestatin: normal/wild-type as well as a retro-inverso (R-I) version, with not only inversion of chirality (L→D amino acids) but also reversal of sequence (carboxyl→amino). The R-I peptide was entirely resistant to proteolytic digestion and displayed enhanced potency as well as preserved specificity of action toward nicotinic cholinergic events: catecholamine secretion, agonist desensitization, secretory protein transcription, and cationic signal transduction. Structural modeling suggested similar side-chain orientations of the wild-type and R-I isomers, whereas circular dichroism spectroscopy documented inversion of chirality. In vivo, the R-I peptide rescued hypertension in 2 mouse models of the human trait: monogenic chromogranin A–targeted ablation, with prolonged efficacy of the R-I version and a polygenic model, with magnified efficacy of the R-I version. These results may have general implications for generation of metabolically stable mimics of biologically active peptides for cardiovascular pathways. The findings also point the way toward a potential new class of drug therapeutics for an important risk trait and, more generally, open the door to broader applications of the R-I strategy in other pathways involved in cardiovascular biology, with the potential for synthesis of diagnostic and therapeutic probes for both physiology and disease.

Collaboration


Dive into the Nilima Biswas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiaur R. Gayen

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan S. Friese

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge