Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nilima Gandhi is active.

Publication


Featured researches published by Nilima Gandhi.


Environmental Science & Technology | 2010

New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc

Nilima Gandhi; Miriam Diamond; D. van de Meent; Mark A. J. Huijbregts; Willie J.G.M. Peijnenburg; Jeroen B. Guinée

Current practice in chemical hazard ranking and toxic impact assessments is to estimate fate and toxicity assuming the chemical exists in dissolved and particulate phases and, for metals, that all dissolved species are equally bioavailable. This introduces significant error since metal effects are related to the truly dissolved phase and free metal ion within it, not the total dissolved phase. We introduce a Bioavailability Factor (BF) to the calculation of hazard or Comparative Toxicity Potentials (CTPs) (also known as Characterization Factors; CFs) for use in Life Cycle Impact Assessment (LCIA). The method uses for calculation (1) USEtox for environmental fate, (2) WHAM 6.0 for metal partitioning and speciation in aquatic systems, and (3) Biotic Ligand Model (BLM) for average toxicity. For 12 EU water-types, we calculated medians (range) of CTPs of 1.5 x 10(4) (1.5 x 10(2) to 1.2 x 10(5)), 5.6 x 10(4) (9.4 x 10(3) to 4.1 x 10(5)), and 2.1 x 10(4) (7 x 10(3) to 5.8 x 10(4)) day*m(3)/kg for Cu, Ni, and Zn, respectively, which are up to approximately 1000 times lower than previous values. The greatest contributor to variability in CTPs was the BF, followed by toxicity Effect Factor (EF). The importance of the choice of water-type is shown by changes in the relative ranking of CTPs, which are equally influenced by water chemistry and inherent metal-specific differences.


Environmental Science & Technology | 2014

Fish mercury levels appear to be increasing lately: a report from 40 years of monitoring in the Province of Ontario, Canada.

Nilima Gandhi; Rex W.K. Tang; Satyendra P. Bhavsar; George B. Arhonditsis

Recent mercury levels and trends reported for North America suggest a mixed (positive/negative) outlook for the environmental mercury problem. Using one of the largest consistent monitoring data sets in the world, here we present long-term and recent mercury trends in Walleye, Northern Pike, and Lake Trout from the Province of Ontario, Canada, which contains about one-third of the worlds fresh water and covers a wide geographical area (1.5 and 3 times larger than France and Germany, respectively). Overall, the results indicate that the fish mercury levels either declined (0.01-0.07 μg/g decade) or remained stable between the 1970s and 2012. The rates of mercury decline were substantially greater (mostly 0.05-0.31 μg/g decade) during the 1970s/80s possibly in response to reductions in mercury emissions. However, Walleye and Pike levels have generally increased (0.01-0.27 μg/g decade) in recent years (1995-2012), especially for northern Ontario (effect sizes for differences between the two periods ranged from 0.39 to 1.04). Proportions of Walleye and Pike locations showing a flat or increasing trend increased from 26-44% to 59-73% between the 1970s/80s and 1995-2012. Mercury emissions in North America have declined over the last few decades, and as such it is logical to expect recovery in fish mercury levels; however, other factors such as global emissions, climate change, invasive species, and local geochemistry are likely affecting the response time and magnitude.


Chemosphere | 2011

Implications of geographic variability on comparative toxicity potentials of cu, ni and zn in freshwaters of canadian ecoregions

Nilima Gandhi; Mark A. J. Huijbregts; Dik van de Meent; Willie J.G.M. Peijnenburg; Jeroen B. Guinée; Miriam Diamond

Current methods of estimating potential environmental impacts of metals in hazard and Life Cycle Impact Assessment (LCIA) do not consider differences in chemistry and landscape properties between geographic sites. Here, we developed and applied a model for regional aquatic impact characterization of metals using an updated method for estimating environmental fate factor (FF), bioavailability factor (BF) and aquatic ecotoxicity factor (EF). We applied the model to analyze differences in Comparative Toxicity Potentials (CTPs) of Cu, Ni and Zn for 24 Canadian ecoregions. The combined impacts of regional variability in ambient chemistry (in particular DOC, pH and hardness) and landscape properties (water residence time) can change the CTPs of these metals for freshwater by up to three orders of magnitude and change the relative ranking of metal hazard between ecoregions. Variation among Canadian freshwater chemistries and landscape characteristics influence the FFs within two orders of magnitude, BFs within two orders of magnitude for Ni and Zn and four orders of magnitude for Cu, and EFs within one order of magnitude. Sensitivity of metal FFs to environmental parameters alone spans three orders of magnitude when a constant water chemistry was used for all ecoregions. These results indicate that application of regionalised metal CTPs can have a significant influence in the analysis of ecotoxicological impacts in the life cycle assessment of products and processes.


Environmental Toxicology and Chemistry | 2007

Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: Application to Lahontan Reservoir (Nevada, USA)

Nilima Gandhi; Satyendra P. Bhavsar; Miriam Diamond; James S. Kuwabara; Mark Marvin-DiPasquale; David P. Krabbenhoft

A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)(2), and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations.


Environmental Toxicology and Chemistry | 2004

Development of a coupled metal speciation-fate model for surface aquatic systems.

Satyendra P. Bhavsar; Miriam Diamond; Les J. Evans; Nilima Gandhi; Joel Nilsen; Paula M.C. Antunes

A coupled metal transport and speciation model (TRANSPEC) has been developed for surface aquatic systems that explicitly considers the influence of metal speciation on fate. The TRANSPEC, which is general to most metal and surface aquatic systems, is constructed by sequentially coupling the speciation/complexation module (in this application MINEQL+) with the fugacity/aquivalence approach for the fate calculations. This model formulation increases the mechanistic detail, predictive power, and fidelity to reality of current fugacity-aquivalence fate models for metals by estimating aqueous speciation and complexation, rather than relying on empirically derived partition coefficients. A pseudo-steady state version of TRANSPEC was used to simulate Zn dynamics in Ross Lake (Flin Flon, MB, Canada) that received elevated metal and organic matter inputs for over 50 years. Field studies revealed that ZnS forms soluble ZnL, Zn2+, and ZnSO4(0) increasing pore water concentrations when surficial sediments turn oxic during fall. The model results for three seasonal scenarios suggest that Zn remobilization is driven by resuspension of insoluble ZnS and the contribution of diffusion is negligible, even during fall when ZnS dissolves to increase the concentration of soluble species under oxic conditions in the sediments. The low diffusive flux is due to the binding of Zn to colloidal dissolved organic matter (DOM) for which sediment-water diffusion is relatively slow, a result that was obtained as a result of considering metal speciation in the fate calculations.


Environmental Science & Technology | 2010

Black Carbon Inclusive Multichemical Modeling of PBDE and PCB Biomagnification and -Transformation in Estuarine Food Webs

Carolina Di Paolo; Nilima Gandhi; Satyendra P. Bhavsar; Martine J. van den Heuvel-Greve; Albert A. Koelmans

Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems.


Environmental Toxicology and Chemistry | 2007

Effects of estimates from different geochemical models on metal fate predicted by coupled speciation‐fate models

Satyendra P. Bhavsar; Nilima Gandhi; Miriam Diamond; Alan Lock; Graeme Spiers; M. Catalina Alfaro de la Torre

Coupled metal speciation-fate models are an improvement over stand-alone fate-transport models for accurately assessing metal fate and transport. These coupled models estimate fate-controlling partition coefficients using geochemical speciation/complexation models. Commercially available geochemical models are practical options for a two-step, loose coupling with fate-transport models. These models differ in their partitioning estimates because of differences in assumptions, databases, and so on. The present study examines the effects of differences in estimates from geochemical models on estimates of cationic metal fate using two geochemical models: the Windermere humic aqueous model (WHAM) and the minicomputer equilibrium+ model (MINEQL+). The results from each geochemical model were used as input to the fate module of TRANSPEC (a general, coupled metal transport and speciation model). The two versions of the TRANSPEC model were then used to assess the fate of five cationic metals (Cd, Cu, Ni, Pb, and Zn) in Ross Lake (Flin Flon, MB, Canada; alkaline, eutrophic, mine impacted), Kelly Lake (Sudbury, ON, Canada; circumneutral, mesotrophic, mine influenced), and Lake Tantaré (Quebec City, QC, Canada; acidic, oligotrophic, pristine). For relatively soluble metals (Cd, Ni, and Zn), the WHAM and MINEQL+ estimates of speciation/complexation were similar for Ross and Kelly lakes but differed for Lake Tantaré. These differences, however, did not result in significant differences in overall fate estimates. Marked differences were observed between the WHAM and MINEQL+ estimates of partition coefficient, Kd, for more particle-reactive Cu and Pb that translated into the greatest impact on fate in mesotrophic Kelly Lake, in which particle movement is important for fate.


Environment International | 2014

Cooking fish is not effective in reducing exposure to perfluoroalkyl and polyfluoroalkyl substances.

Satyendra P. Bhavsar; Xianming Zhang; Rui Guo; Eric Braekevelt; Steve Petro; Nilima Gandhi; Eric J. Reiner; Holly Lee; Roni Bronson; Sheryl A. Tittlemier

Consumption of fish is considered a part of a healthy diet; however, health risks from fish consumption exist due to potential exposure to various contaminants accumulated in fish. Cooking fish can reduce exposure to many organic chemicals in fish. Similar results have been presented for low levels of perfluoroalkyl and polyfluoroalkyl substances (PFASs), a class of contaminants of emerging concern, in grocery store fish. We examined the effectiveness of three cooking methods (i.e., baking, broiling, and frying) on reducing PFAS levels in four sport fish species. Samples of Chinook salmon, common carp, lake trout and walleye were collected from four rivers in Ontario, Canada and skin-off fillets were analyzed for regular groups of PFASs such as perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), as well as perfluoroalkyl phosphonic acids (PFPAs), perfluoroalkyl phosphinic acids (PFPIAs) and polyfluoroalkyl phosphoric acid diesters (diPAPs), which are PFASs of emerging concern. Perfluorooctane sulfonate (PFOS) was the dominant PFAS detected and the concentrations were more than an order of magnitude higher than those reported for fish from grocery stores in Canada, Spain, and China. Although concentrations of PFOS in fish fillets generally increase after cooking, amounts of PFOS largely remain unchanged. Relatively minor differences in changes in the fish PFAS amounts after cooking depended on fish species and cooking method used. We conclude that cooking sport fish is generally not an effective approach to reduce dietary exposure to PFASs, especially PFOS.


Journal of Great Lakes Research | 2006

Dynamics of PCBs in the Food Web of Lake Winnipeg

Sarah B. Gewurtz; Nilima Gandhi; Gary A. Stern; William G. Franzin; Bruno Rosenberg; Miriam Diamond

ABSTRACT The bioaccumulation of polychlorinated biphenyls (PCBs) is examined in the food web of Lake Winnipeg using measured contaminant concentrations, stable isotopes of nitrogen, and a food web model. Measured concentrations of the sum of 103 PCB congeners are higher in south basin water, sediment, and biota compared with the north. The trophic positions of the top predators as well as the extent of biomagnification of PCBs per unit trophic level do not differ significantly between the north and the south basins. We therefore conclude that the higher PCB concentrations in the south basin are due primarily to higher PCB loadings via riverine sources to the south rather than food web processes. In contrast, the data from the north basin suggest lower total loadings of which a higher fraction is from atmospheric deposition. We find that rainbow smelt (Osmerus mordax) are not associated with elevated exposure of contaminants to top predators of the north basin. This surprising result is attributed to their reduced fitness in this relatively shallow and warm system, which may prevent them from feeding at an elevated trophic level compared with other forage fish. Finally, we hypothesize that high nutrient associated DOC in water decreases PCB bioavailability to lower trophic level organisms and hence the entire food web.


Environmental Science & Technology | 2015

Evaluation and Interconversion of Various Indicator PCB Schemes for ∑PCB and Dioxin-Like PCB Toxic Equivalent Levels in Fish

Nilima Gandhi; Satyendra P. Bhavsar; Eric J. Reiner; Tony Chen; Dave Morse; George B. Arhonditsis; Ken G. Drouillard

Polychlorinated biphenyls (PCBs) remain chemicals of concern more than three decades after the ban on their production. Technical mixture-based total PCB measurements are unreliable due to weathering and degradation, while detailed full congener specific measurements can be time-consuming and costly for large studies. Measurements using a subset of indicator PCBs (iPCBs) have been considered appropriate; however, inclusion of different PCB congeners in various iPCB schemes makes it challenging to readily compare data. Here, using an extensive data set, we examine the performance of existing iPCB3 (PCB 138, 153, and 180), iPCB6 (iPCB3 plus 28, 52, and 101) and iPCB7 (iPCB6 plus 118) schemes, and new iPCB schemes in estimating total of PCB congeners (∑PCB) and dioxin-like PCB toxic equivalent (dlPCB-TEQ) concentrations in sport fish fillets and the whole body of juvenile fish. The coefficients of determination (R(2)) for regressions conducted using logarithmically transformed data suggest that inclusion of an increased number of PCBs in an iPCB improves relationship with ∑PCB but not dlPCB-TEQs. Overall, novel iPCB3 (PCB 95, 118, and 153), iPCB4 (iPCB3 plus 138) and iPCB5 (iPCB4 plus 110) presented in this study and existing iPCB6 and iPCB7 are the most optimal indicators, while the current iPCB3 should be avoided. Measurement of ∑PCB based on a more detailed analysis (50+ congeners) is also overall a good approach for assessing PCB contamination and to track PCB origin in fish. Relationships among the existing and new iPCB schemes have been presented to facilitate their interconversion. The iPCB6 equiv levels for the 6.5 and 10 pg/g benchmarks of dlPCB-TEQ05 are about 50 and 120 ng/g ww, respectively, which are lower than the corresponding iPCB6 limits of 125 and 300 ng/g ww set by the European Union.

Collaboration


Dive into the Nilima Gandhi's collaboration.

Top Co-Authors

Avatar

Satyendra P. Bhavsar

Ontario Ministry of the Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge