Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satyendra P. Bhavsar is active.

Publication


Featured researches published by Satyendra P. Bhavsar.


Environmental Science & Technology | 2010

Changes in mercury levels in great lakes fish between 1970s and 2007.

Satyendra P. Bhavsar; Sarah B. Gewurtz; Daryl J. McGoldrick; Michael J. Keir; Sean Backus

A number of initiatives have curtailed anthropogenic mercury emissions in North America over the last two decades; however, various factors, including long-range transport of global emissions, may complicate the response of fish mercury levels to remedial actions. Since the Great Lakes of North America are together the largest surface freshwater body in the world and are under the influence of many complicating factors, trends of mercury in fish from the Great Lakes can reflect the overall impact of mercury management actions at local, regional, and perhaps global scales. Here we present a comprehensive view of mercury trends in Canadian Great Lakes fish using two large (total 5807 samples), different (fillet and whole fish), and long-term (1970s-2007) monitoring data sets. The spatial differences in lake trout and walleye mercury levels during this period have generally been within a factor of 2-3 with Lakes Erie and Superior having the lowest and highest concentrations, respectively. These spatial differences have diminished in the recent years (2000-2007). The concentrations have generally declined over the three decades (mid-1970s to 2007); however, in recent years, the concentration trends are flat in Lake Ontario walleye and appear to be increasing in Lake Erie walleye. There was a mismatch in the Lake Ontario lake trout and walleye temporal trends, which shows the importance of considering more than one fish species for proper spatial/temporal trend assessments.


Environment International | 2011

Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories.

Sarah B. Gewurtz; Satyendra P. Bhavsar; Rachael Fletcher

Fish advisories for polychlorinated biphenyls (total-PCBs) and mercury are often given on a length-specific basis and fish sex is usually not considered. The relationship between concentration and length is well established for mercury, however its suitability for total-PCBs and the influence of sex over the large scale covered by most monitoring programs is not well known. Here we use what is perhaps the largest consistent sport fish contaminant dataset to evaluate the relationship between total-PCB/mercury and length and sex. We evaluated seven of the most commonly consumed fishes from the Canadian Great Lakes and two Ontario (Canada) inland lakes. For mercury, the relationship between concentration and length was significant (p<0.05) in most fish species and locations. For total-PCB, this relationship was also generally significant in Chinook salmon and lake trout, which are the species with the most advisories for this compound. In contrast, significant relationships were found less often for whitefish, northern pike, smallmouth bass, walleye, and especially yellow perch. However, mercury usually drives fish consumption advisories for these species. Overall, our results support the protocol of issuing contaminant advice on a length-specific basis in fish monitoring programs with reasonable confidence when at least a moderate number of samples over the natural size range of a species are included in the analysis. Sex differences were common for walleye (males>females, p<0.05) but not other species, suggesting that an equal number of male and female walleye should be used in deriving fish advisories for walleye.


Environmental Science & Technology | 2010

Identification and screening analysis of halogenated norbornene flame retardants in the Laurentian Great Lakes: Dechloranes 602, 603, and 604.

Li Shen; Eric J. Reiner; Karen MacPherson; Terry Kolic; Ed Sverko; Paul A. Helm; Satyendra P. Bhavsar; Ian D. Brindle; Chris H. Marvin

Dechlorane (Dec) 602, Dechlorane (Dec) 603, Dechlorane (Dec) 604, and Dechlorane Plus (DP) are flame retardant substitutes for mirex. Dec 602, 603, and 604 were detected in sediment and fish from the Laurentian Great Lakes. Lake Ontario surface sediments had the highest concentrations of Dec 602 and 604 at 6.0 and 4.0 ng/g dry weight, respectively. Temporal analysis of a Lake Ontario sediment core indicates that Dec 602 and 604 trends are similar to DP peaking in the early 1980s. Lake trout and whitefish from Lake Ontario also had the highest concentrations of Dec 602 and 604 at 34 and 1.2 ng/g lipid. Concentrations of Dec 602 were higher than those of DP in all fish samples, indicating that Dec 602 is likely more bioavailable and/or more readily bioaccumulates than DP. Spatial trends for Dec 602 and 604 in sediment and fish indicate that manufacturing plants along the Niagara River upstream of Lake Ontario were important sources of Dec 602 and 604 to the Great Lakes, while Dec 603 in the Great Lakes is likely from atmospheric deposition. The findings of this first report of Dec 602, 603, and 604 in the Laurentian Great Lakes basin suggests further investigation of halogenated norbornene flame retardants in the environment is merited.


Environmental Health Perspectives | 2011

Risks and benefits of consumption of great lakes fish

Mary Turyk; Satyendra P. Bhavsar; William W. Bowerman; Eric Boysen; Milton Clark; Miriam Diamond; Donna Mergler; Peter Pantazopoulos; Susan L. Schantz; David O. Carpenter

Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed.


Journal of Great Lakes Research | 2007

Are PCB Levels in Fish from the Canadian Great Lakes Still Declining

Satyendra P. Bhavsar; Donald A. Jackson; Alan Hayton; Eric J. Reiner; Tony Chen; John Bodnar

ABSTRACT Long- and short-term levels and trends of polychlorinated biphenyls (PCBs) in lake trout (Salvelinus namaycush) and walleye (Sander vitreus) from the Canadian waters of the Great Lakes are examined using the bootstrap resampling method in light of the Great Lakes Strategy 2002 (GLS-2002) objective of decrease in concentrations by 25% during 2000–2007. This objective has been set as an indicator of progress toward the long-term goal of all Great Lakes fish being safe to eat without restriction. Lake Superior lake trout and walleye PCB concentrations were almost unchanged between 1990–2006, and the bootstrap analysis suggests that the probability of achieving the GLS-2002 objective is negligible (< 2%). The PCB levels in Lake Huron lake trout and walleye are decreasing; the declines between 2000–2007 are estimated to be 25–35% and 5–30%, respectively. In contrast, Lake Erie walleye concentrations will likely increase by 25–50% between 2000–2007. For Lake Ontario lake trout, achieving the 25% reduction target seems highly probable with a likely decrease of 45–55%; for Lake Ontario walleye, the probability of achieving such a reduction is only 8% with an expected change of −13 to +15%. Although the targeted reduction may not be achieved for walleye from Lakes Superior, Huron, and Ontario, their best projected 2007 PCB levels are below the unlimited fish consumption guideline of 105 ng/g wet weight used by the Ontario Ministry of the Environment. In contrast, although there are high probabilities of achieving the goal for lake trout from Lakes Huron and Ontario, their best projected 2007 PCB levels (160 and 370 ng/g ww, respectively) will continue to result in consumption restrictions. Lake Superior lake trout concentrations may remain unchanged at the current elevated level of 160 ng/g ww. For Lake Erie fish, the projected 2007 concentrations and the increasing trends are both worrisome. Additional measurements beyond 2007 are necessary to confirm these estimates because of the observed periodic oscillations in the concentrations.


Environmental Science & Technology | 2011

Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport.

Emily Awad; Xianming Zhang; Satyendra P. Bhavsar; Steve Petro; Patrick W. Crozier; Eric J. Reiner; Rachael Fletcher; Sheryl A. Tittlemier; Eric Braekevelt

Perfluorooctane sulfonate (PFOS; a perfluorinated compound or PFC), its salts, and perfluorooctane sulfonyl fluoride have recently been listed in Annex B of the Stockholm Convention due to their widespread presence, persistence, and toxicity. Because of the persistent nature of PFCs, it is generally presumed that the impact of direct discharges of these chemicals on a receiving environment would be long-lasting. However, long-term environmental fate studies based on field measurements are rare. We examined spatial and long-term (9 year) temporal trends of PFCs in water, sediment, fish, and fish liver collected in 2003, 2006, and 2009 from 10 locations spanning ∼20 km in Etobicoke and Spring Creeks, where an accidental release of fire fighting foam containing PFOS from nearby Toronto International Airport occurred in 2000. Even a decade after the spill, sediment PFOS concentrations are still elevated in Spring Creek Pond which received the foam discharge; however, the major impact is relatively localized likely due to the stormwater management nature of the pond and the diluting effect of Etobicoke Creek. Fish and fish liver PFOS concentrations at a Spring Creek location downstream of Spring Creek Pond declined by about 70 and 85%, respectively, between 2003 and 2009. PFOS in water at locations further downstream in Etobicoke Creek have declined by >99.99% since the spill; however, the 2009 water and fish levels were ∼2-10 times higher than upstream locations likely due to the long-term impact of the spill as well as urbanization. The decrease in the upstream PFOS concentrations likely reflects the reduction of PFOS sources due to phased out production by 3M and regulations on the use of PFOS in fire fighting foams. Field-based sediment/water distribution coefficients (K(D)) and bioaccumulation factors (BAF) were calculated from environmental measurements. Log K(D) values were 0.54-1.65 for perfluoroalkyl sulfonates (PFASs) and 1.00-1.85 for perfluorocarboxylates (PFCAs). Log BAF(fish) ranged from 1.85 to 3.24 for PFASs and 0.88-3.47 for PFCAs, whereas log BAF(fish liver) ranged from 2.1-4.3 for PFASs and 1.0-5.0 for PFCAs.


Ecotoxicology | 2011

Spatiotemporal trends of mercury in walleye and largemouth bass from the Laurentian Great Lakes Region

Bruce A. Monson; David F. Staples; Satyendra P. Bhavsar; Thomas M. Holsen; Candy S. Schrank; Sara K. Moses; Daryl J. McGoldrick; Sean Backus; Kathryn A. Williams

The risk of mercury (Hg) exposure to humans and wildlife from fish consumption has driven extensive mercury analysis throughout the Great Lakes Region since the 1970s. This study compiled fish-Hg data from multiple sources in the region and assessed spatiotemporal trends of Hg concentrations in two representative top predator fish species. Walleye (Sander vitreus) and largemouth bass (Micropterus salmoides) were chosen for the trend analysis because they had more Hg records (63,872) than other fish species that had been sampled from waters throughout the region. Waterbody types were inland lakes (70%), the Great Lakes, impoundments, and rivers. The compiled datasets were analyzed with a mixed effects statistical model having random effects of station, year, and fish length; and fixed effects of year, tissue type, fish length, habitat, and season. The results showed a generally declining temporal trend in fish-Hg for the region (1970–2009), with spatial trends of increasing Hg concentration from south to north and from west to east across the region. Nonlinearity was evident in the general downward trends of Ontario walleye, with a shift to an upward trend beginning in the 1990s. Only ongoing monitoring can reveal if this upward shift is an oscillation in a long-term decline, a statistical anomaly, or a sustained declining temporal trend in regional fish-Hg concentrations.


Chemosphere | 2008

Temporal trends and spatial distribution of dioxins and furans in lake trout or lake whitefish from the Canadian Great Lakes.

Satyendra P. Bhavsar; Emily Awad; Rachael Fletcher; Alan Hayton; Keith M. Somers; Terry Kolic; Karen MacPherson; Eric J. Reiner

Concentrations of the seventeen 2,3,7,8-substituted, most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in lake trout (Salvelinus namaycush) or lake whitefish (Coregonus clupeaformis) collected between 1989 and 2003 from the Canadian Great Lakes as a part of the on-going Sport Fish Contaminant Monitoring Program of the Ontario Ministry of the Environment. These monitoring data were used to assess temporal trends and spatial variations of these compounds in the Canadian Great Lakes. Toxic equivalents (TEQs) were calculated using the measured congener concentrations and toxicity equivalency factors (TEFs) published by the World Health Organization in 1998. Five congeners, namely 2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, and 2,3,4,7,8-PeCDF, were the most dominant congeners among the 17 congeners analyzed. The highest TEQs were found for Lake Ontario lake trout (22-54 pg g(-1)) while the TEQs for the other Canadian Great Lakes were 60-95% lower. Non-parametric Mann-Kendall and Sens tests performed on TEQs and PCDD/Fs standardized at a mean lake trout length of 60 cm suggest a linearly decreasing trend for PCDD/Fs in lake trout from Lakes Ontario and Huron. There was no monotonously increasing or decreasing trend found for Lake Superior lake trout. The ratios of 2,3,7,8-TCDD to 2,3,7,8-TCDF concentrations were generally constant during the 1989-2003 period with the values being in the order of Lakes Superior (0.05-0.3) <or= Huron (0.16-0.25)<<Ontario (0.56-0.88). These spatial differences observed in the relative abundance of TCDD and TCDF suggest that the sources of dioxins and furans differ between the upper and lower Great Lakes.


Environment International | 2008

Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another.

Satyendra P. Bhavsar; Eric J. Reiner; Alan Hayton; Rachael Fletcher; Karen MacPherson

Toxic Equivalency Factors (TEFs) are an essential part of the Toxic Equivalent (TEQ) concept and have evolved for dioxins/dioxin-like compounds over the last two and half decades. Therefore, it is difficult to compare past and current TEQs that are reported using different TEFs without explicitly mentioning underlying congener concentrations. Using what likely is the largest known dioxin/furan (PCDD/F) and dioxin-like polychlorinated biphenyl (dl-PCB or DLP) fish database, here we present regression models that can facilitate conversion of a fish TEQ from an old to a newer TEF scheme. The results show that the mammalian PCDD/F-TEQ based on the latest TEF(WHO-05) is about 7.5% lower than that based on TEF(WHO-98). The mammalian DLP-TEQ(WHO-05) is on average 25-26% lower than almost identical DLP-TEQ(WHO-94) and DLP-TEQ(WHO-98). Total-TEQ(WHO-05) is on average 22% lower than Total-TEQ(WHO-98). According to the current toxicological standards for dioxins/furans, all previous major TEF schemes except TEF(Germany-85) and TEF(USEPA-87) were conservative (i.e., higher) in estimating TEQs. The major (> 75%) contribution to PCDD/F-TEQ(WHO-05) is from 2,3,7,8-TCDD (33%), 1,2,3,7,8-PCDD (26%), 2,3,7,8-TCDF (10%), and 2,3,4,7,8-PCDF (9%). The DLP-TEQ(WHO-05) is dominated by PCB-126 which on average contributes about 88%. The DLP-TEQ generally contribute > 70% of Total-TEQ. When reporting TEQs, we recommend that the underlying congener specific concentrations are presented, TEF scheme used is clearly stated, names of compounds included are explicitly expressed, and TEQs are identified accordingly (e.g., DLP-TEQ, PCDD/F-TEQ, Total-TEQ).


Ecotoxicology | 2011

Great Lakes fish consumption advisories: is mercury a concern?

Satyendra P. Bhavsar; Emily Awad; Chris G. Mahon; Steve Petro

The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1–2.5% and 9–16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a “mercury only” scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1–7% for GP; 13–32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have “do not eat” advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.

Collaboration


Dive into the Satyendra P. Bhavsar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Reiner

Ontario Ministry of the Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Helm

Ontario Ministry of the Environment

View shared research outputs
Top Co-Authors

Avatar

Rachael Fletcher

Ontario Ministry of the Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Hayton

Ontario Ministry of the Environment

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge