Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nirav R. Bhakta is active.

Publication


Featured researches published by Nirav R. Bhakta.


Nature | 2015

Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

Devon A. Lawson; Nirav R. Bhakta; Kai Kessenbrock; Karin D. Prummel; Ying Yu; Alicia Zhou; Henok Eyob; Sanjeev Balakrishnan; Chih-Yang Wang; Paul Yaswen; Andrei Goga; Zena Werb

Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.


Nature Immunology | 2005

Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment.

Nirav R. Bhakta; David Y. Oh; Richard S. Lewis

The three-dimensional thymic microenvironment and calcium signaling pathways are essential for driving positive selection of developing T cells. However, the nature of calcium signals and the diversity of their effects in the thymus are unknown. We describe here a thymic slice preparation for visualizing thymocyte motility and signaling in real time with two-photon microscopy. Naive thymocytes were highly motile at low intracellular calcium concentrations, but during positive selection cells became immobile and showed sustained calcium concentration oscillations. Increased intracellular calcium was necessary and sufficient to arrest thymocyte motility. The calcium dependence of motility acts to prolong thymocyte interactions with antigen-bearing stromal cells, promoting sustained signaling that may enhance the expression of genes underlying positive selection.


Immunological Reviews | 2011

Human asthma phenotypes: from the clinic, to cytokines, and back again

Nirav R. Bhakta; Prescott G. Woodruff

A large body of experimental evidence supports the hypothesis that T‐helper 2 (Th2) cytokines orchestrate allergic airway inflammation in animal models. However, human asthma is heterogeneous with respect to clinical features, cellular sources of inflammation, and response to common therapies. This disease heterogeneity has been investigated using sputum cytology as well as unbiased clustering approaches using cellular and clinical data. Important differences in cytokine‐driven inflammation may underlie this heterogeneity, and studies in human subjects with asthma have begun to elucidate these molecular differences. This molecular heterogeneity may be assessed by existing biomarkers (induced sputum evaluation or exhaled nitric oxide testing) or may require novel biomarkers. Effective testing and application of emerging therapies that target Th2 cytokines will depend on accurate and easily obtained biomarkers of this molecular heterogeneity in asthma. Furthermore, whether other non‐Th2 cytokine pathways underlie airway inflammation in specific subsets of patients with asthma is an unresolved question and an important goal of future research using both mouse models and human studies.


American Journal of Respiratory and Critical Care Medicine | 2012

Airway Epithelial miRNA Expression Is Altered in Asthma

Owen D. Solberg; Edwin Justin Ostrin; Michael I. Love; Jeffrey C. Peng; Nirav R. Bhakta; Lydia Hou; Christine P. Nguyen; Margaret Solon; Cindy Nguyen; Andrea J. Barczak; Lorna Zlock; Denitza P. Blagev; Walter E. Finkbeiner; K. Mark Ansel; Joseph R. Arron; David J. Erle; Prescott G. Woodruff

RATIONALE Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. OBJECTIVES To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13-regulated miRNAs. METHODS We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. MEASUREMENTS AND MAIN RESULTS Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. CONCLUSIONS Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway epithelial cell differentiation. Clinical trial registered with www.clinicaltrials.gov (NCT 00595153).


Nature Immunology | 2014

A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production

Laura J. Simpson; Sana Patel; Nirav R. Bhakta; David F. Choy; Hans Brightbill; Xin Ren; Yanli Wang; Heather H. Pua; Dirk Baumjohann; Misty M. Montoya; Marisella Panduro; Kelly A Remedios; Xiaozhu Huang; John V. Fahy; Joseph R. Arron; Prescott G. Woodruff; K. Mark Ansel

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


American Journal of Respiratory and Critical Care Medicine | 2011

Sarcoidosis Blood Transcriptome Reflects Lung Inflammation and Overlaps with Tuberculosis

Laura L. Koth; Owen D. Solberg; Jeffrey C. Peng; Nirav R. Bhakta; Christine P. Nguyen; Prescott G. Woodruff

RATIONALE Sarcoidosis is a granulomatous disease of unknown etiology, although M. tuberculosis may play a role in the pathogenesis. The traditional view holds that inflammation in sarcoidosis is compartmentalized to involved organs. OBJECTIVES To determine whether whole blood gene expression signatures reflect inflammatory pathways in the lung in sarcoidosis and whether these signatures overlap with tuberculosis. METHODS We analyzed transcriptomic data from blood and lung biopsies in sarcoidosis and compared these profiles with blood transcriptomic data from tuberculosis and other diseases. MEASUREMENTS AND MAIN RESULTS Applying machine learning algorithms to blood gene expression data, we built a classifier that distinguished sarcoidosis from health in derivation and validation cohorts (92% sensitivity, 92% specificity). The most discriminative genes were confirmed by quantitative PCR and correlated with disease severity. Transcript profiles significantly induced in blood overlapped with those in lung biopsies and identified shared dominant inflammatory pathways (e.g., Type-I/II interferons). Sarcoidosis and tuberculosis shared more overlap in blood gene expression compared with other diseases using the 86-gene signature reported to be specific for tuberculosis and the sarcoidosis signature presented herein, although reapplication of machine learning algorithms could identify genes specific for sarcoidosis. CONCLUSIONS These data indicate that blood transcriptome analysis provides a noninvasive method for identifying inflammatory pathways in sarcoidosis, that these pathways may be leveraged to complement more invasive procedures for diagnosis or assessment of disease severity, and that sarcoidosis and tuberculosis share overlap in gene regulation of specific inflammatory pathways.


American Journal of Respiratory and Critical Care Medicine | 2016

Inflammatory and Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations

Loren C. Denlinger; Brenda R. Phillips; Sima K. Ramratnam; Kristie R. Ross; Nirav R. Bhakta; Juan Carlos Cardet; Mario Castro; Stephen P. Peters; Wanda Phipatanakul; Shean J. Aujla; Leonard B. Bacharier; Eugene R. Bleecker; Suzy Comhair; Andrea M. Coverstone; Mark D. DeBoer; Serpil C. Erzurum; Sean B. Fain; Merritt L. Fajt; Anne M. Fitzpatrick; Jonathan M. Gaffin; Benjamin Gaston; Annette T. Hastie; Gregory A. Hawkins; Fernando Holguin; Anne Marie Irani; Elliot Israel; Bruce D. Levy; Ngoc P. Ly; Deborah A. Meyers; Wendy C. Moore

Rationale: Reducing asthma exacerbation frequency is an important criterion for approval of asthma therapies, but the clinical features of exacerbation‐prone asthma (EPA) remain incompletely defined. Objectives: To describe the clinical, physiologic, inflammatory, and comorbidity factors associated with EPA. Methods: Baseline data from the NHLBI Severe Asthma Research Program (SARP)‐3 were analyzed. An exacerbation was defined as a burst of systemic corticosteroids lasting 3 days or more. Patients were classified by their number of exacerbations in the past year: none, few (one to two), or exacerbation prone (≥3). Replication of a multivariable model was performed with data from the SARP‐1 + 2 cohort. Measurements and Main Results: Of 709 subjects in the SARP‐3 cohort, 294 (41%) had no exacerbations and 173 (24%) were exacerbation prone in the prior year. Several factors normally associated with severity (asthma duration, age, sex, race, and socioeconomic status) did not associate with exacerbation frequency in SARP‐3; bronchodilator responsiveness also discriminated exacerbation proneness from asthma severity. In the SARP‐3 multivariable model, blood eosinophils, body mass index, and bronchodilator responsiveness were positively associated with exacerbation frequency (rate ratios [95% confidence interval], 1.6 [1.2‐2.1] for every log unit of eosinophils, 1.3 [1.1‐1.4] for every 10 body mass index units, and 1.2 [1.1‐1.4] for every 10% increase in bronchodilatory responsiveness). Chronic sinusitis and gastroesophageal reflux were also associated with exacerbation frequency (1.7 [1.4‐2.1] and 1.6 [1.3‐2.0]), even after adjustment for multiple factors. These effects were replicated in the SARP‐1 + 2 multivariable model. Conclusions: EPA may be a distinct susceptibility phenotype with implications for the targeting of exacerbation prevention strategies. Clinical trial registered with www.clinicaltrials.gov (NCT 01760915).


American Journal of Respiratory and Critical Care Medicine | 2016

IFN-γ–Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells

Joris Ramstein; Caroline E. Broos; Laura J. Simpson; K. Mark Ansel; Sara A. Sun; Melissa Ho; Prescott G. Woodruff; Nirav R. Bhakta; Laura S. Christian; Christine P. Nguyen; Bobby J. Antalek; Bryan S. Benn; Rudi W. Hendriks; Bernt van den Blink; Mirjam Kool; Laura L. Koth

RATIONALE Pulmonary sarcoidosis is classically defined by T-helper (Th) cell type 1 inflammation (e.g., IFN-γ production by CD4(+) effector T cells). Recently, IL-17A-secreting cells have been found in lung lavage, invoking Th17 immunity in sarcoidosis. Studies also identified IL-17A-secreting cells that expressed IFN-γ, but their abundance as a percentage of total CD4(+) cells was either low or undetermined. OBJECTIVES Based on evidence that Th17 cells can be polarized to Th17.1 cells to produce only IFN-γ, our goal was to determine whether Th17.1 cells are a prominent source of IFN-γ in sarcoidosis. METHODS We developed a single-cell approach to define and isolate major Th-cell subsets using combinations of chemokine receptors and fluorescence-activated cell sorting. We subsequently confirmed the accuracy of subset enrichment by measuring cytokine production. MEASUREMENTS AND MAIN RESULTS Discrimination between Th17 and Th17.1 cells revealed very high percentages of Th17.1 cells in lung lavage in sarcoidosis compared with controls in two separate cohorts. No differences in Th17 or Th1 lavage cells were found compared with controls. Lung lavage Th17.1-cell percentages were also higher than Th1-cell percentages, and approximately 60% of Th17.1-enriched cells produced only IFN-γ. CONCLUSIONS Combined use of surface markers and functional assays to study CD4(+) T cells in sarcoidosis revealed a marked expansion of Th17.1 cells that only produce IFN-γ. These results suggest that Th17.1 cells could be misclassified as Th1 cells and may be the predominant producer of IFN-γ in pulmonary sarcoidosis, challenging the Th1 paradigm of pathogenesis.


The Journal of Allergy and Clinical Immunology | 2017

Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment

Juliana Durack; Susan V. Lynch; Snehal Nariya; Nirav R. Bhakta; Avraham Beigelman; Mario Castro; Anne-Marie Dyer; Elliot Israel; Monica Kraft; Richard J. Martin; David T. Mauger; Sharon R. Rosenberg; Tonya Sharp-King; Steven R. White; Prescott G. Woodruff; Pedro C. Avila; Loren C. Denlinger; Fernando Holguin; Stephen C. Lazarus; Njira L Lugogo; Wendy C. Moore; Stephen P. Peters; Loretta G. Que; Lewis J. Smith; Christine A. Sorkness; Michael E. Wechsler; Sally E. Wenzel; Homer A. Boushey; Yvonne J. Huang

Background Compositional differences in the bronchial bacterial microbiota have been associated with asthma, but it remains unclear whether the findings are attributable to asthma, to aeroallergen sensitization, or to inhaled corticosteroid treatment. Objectives We sought to compare the bronchial bacterial microbiota in adults with steroid‐naive atopic asthma, subjects with atopy but no asthma, and nonatopic healthy control subjects and to determine relationships of the bronchial microbiota to phenotypic features of asthma. Methods Bacterial communities in protected bronchial brushings from 42 atopic asthmatic subjects, 21 subjects with atopy but no asthma, and 21 healthy control subjects were profiled by using 16S rRNA gene sequencing. Bacterial composition and community‐level functions inferred from sequence profiles were analyzed for between‐group differences. Associations with clinical and inflammatory variables were examined, including markers of type 2–related inflammation and change in airway hyperresponsiveness after 6 weeks of fluticasone treatment. Results The bronchial microbiome differed significantly among the 3 groups. Asthmatic subjects were uniquely enriched in members of the Haemophilus, Neisseria, Fusobacterium, and Porphyromonas species and the Sphingomonodaceae family and depleted in members of the Mogibacteriaceae family and Lactobacillales order. Asthma‐associated differences in predicted bacterial functions included involvement of amino acid and short‐chain fatty acid metabolism pathways. Subjects with type 2–high asthma harbored significantly lower bronchial bacterial burden. Distinct changes in specific microbiota members were seen after fluticasone treatment. Steroid responsiveness was linked to differences in baseline compositional and functional features of the bacterial microbiome. Conclusion Even in subjects with mild steroid‐naive asthma, differences in the bronchial microbiome are associated with immunologic and clinical features of the disease. The specific differences identified suggest possible microbiome targets for future approaches to asthma treatment or prevention. Graphical abstract Figure. No Caption available.


Clinical and Translational Allergy | 2013

A qPCR-based metric of Th2 airway inflammation in asthma

Nirav R. Bhakta; Owen D. Solberg; Christine P. Nguyen; Cindy Nguyen; Joseph R. Arron; John V. Fahy; Prescott G. Woodruff

BackgroundUsing microarray profiling of airway epithelial cells, we previously identified a Th2-high molecular phenotype of asthma based on expression of periostin, CLCA1 and serpinB2 and characterized by specific inflammatory, remodeling, and treatment response features. The goal of the current study was to develop a qPCR-based assay of Th2 inflammation to overcome the limitations of microarray-based methods.MethodsAirway epithelial brushings were obtained by bronchoscopy from two clinical studies comprising 44 healthy controls and 62 subjects with asthma, 39 of whom were studied before and after a standardized 8 week course of inhaled corticosteroids (ICS). The qPCR-based expression of periostin, CLCA1 and serpinB2 were combined into a single metric.ResultsIn asthma, the three-gene-mean of periostin, CLCA1 and serpinB2 correlated with FeNO (r = 0.75, p = 0.0002), blood eosinophils (r = 0.58, p = 0.003) and PC20 methacholine (r = -0.65, p = 0.0006), but not total serum IgE (r = 0.33, p = 0.1). Higher baseline three-gene-mean correlated with greater improvement in FEV1 with ICS at 2, 4 and 8 weeks (all p < 0.05). By ROC analysis, the area under the curve (AUC) of the three-gene-mean for FEV1 improvement with ICS at 4 and 8 weeks was 0.94 and 0.87, respectively, which are higher than the AUCs of FeNO, blood eosinophils, IgE or PC20. Th2 airway inflammation as measured by this three-gene-mean also had predictive capacity for an improvement in symptoms.ConclusionsThe three-gene-mean of periostin, CLCA1 and serpinB2 in airway epithelial brushings identifies Th2-high and low populations, is correlated with other Th2 biomarkers, and performs well for prediction of FEV1 improvement with ICS. The three-gene-mean provides a measurement of Th2 airway inflammation that is clinically relevant and that can serve as a valuable tool to evaluate non-invasive biomarkers to predict treatment responses to existing and emerging asthma therapies.

Collaboration


Dive into the Nirav R. Bhakta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John V. Fahy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Erle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elliot Israel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura L. Koth

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge