Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuo Sanjo is active.

Publication


Featured researches published by Nobuo Sanjo.


Journal of Biological Chemistry | 2005

Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations

Agnès Petit; T. Kawarai; Erwan Paitel; Nobuo Sanjo; Mary C. Maj; Michael P. Scheid; Fusheng Chen; Yongjun Gu; Hiroshi Hasegawa; Shabnam Salehi-Rad; Linda Wang; Ekaterina Rogaeva; Paul E. Fraser; Brian Robinson; Peter St George-Hyslop; Anurag Tandon

Mutations in the PTEN-induced kinase 1 (PINK1) gene have recently been implicated in autosomal recessive early onset Parkinson Disease (1, 2). To investigate the role of PINK1 in neurodegeneration, we designed human and murine neuronal cell lines expressing either wild-type PINK1 or PINK1 bearing a mutation associated with Parkinson Disease. We show that under basal and staurosporine-induced conditions, the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells was lower in wild-type PINK1 expressing SH-SY5Y cells than in mock-transfected cells. This phenotype was due to a PINK1-mediated reduction in cytochrome c release from mitochondria, which prevents subsequent caspase-3 activation. We show that overexpression of wild-type PINK1 strongly reduced both basal and staurosporine-induced caspase 3 activity. Overexpression of wild-type PINK1 also reduced the levels of cleaved caspase-9, caspase-3, caspase-7, and activated poly(ADP-ribose) polymerase under both basal and staurosporine-induced conditions. In contrast, Parkinson disease-related mutations and a kinase-inactive mutation in PINK1 abrogated the protective effect of PINK1. Together, these results suggest that PINK1 reduces the basal neuronal pro-apoptotic activity and protects neurons from staurosporine-induced apoptosis. Loss of this protective function may therefore underlie the degeneration of nigral dopaminergic neurons in patients with PINK1 mutations.


Nature | 2006

TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity.

Fusheng Chen; Hiroshi Hasegawa; Gerold Schmitt-Ulms; T. Kawarai; Christopher Bohm; Taiichi Katayama; Yongjun Gu; Nobuo Sanjo; Michael Glista; Ekaterina Rogaeva; Yosuke Wakutani; Raphaelle Pardossi-Piquard; Xueying Ruan; Anurag Tandon; Frédéric Checler; Philippe Marambaud; Kirk C. Hansen; David Westaway; Peter St George-Hyslop; Paul E. Fraser

The presenilin proteins (PS1 and PS2) and their interacting partners nicastrin, aph-1 (refs 4, 5) and pen-2 (ref. 5) form a series of high-molecular-mass, membrane-bound protein complexes that are necessary for γ-secretase and ɛ-secretase cleavage of selected type 1 transmembrane proteins, including the amyloid precursor protein, Notch and cadherins. Modest cleavage activity can be generated by reconstituting these four proteins in yeast and Spodoptera frugiperda (sf9) cells. However, a critical but unanswered question about the biology of the presenilin complexes is how their activity is modulated in terms of substrate specificity and/or relative activities at the γ and ɛ sites. A corollary to this question is whether additional proteins in the presenilin complexes might subsume these putative regulatory functions. The hypothesis that additional proteins might exist in the presenilin complexes is supported by the fact that enzymatically active complexes have a mass that is much greater than predicted for a 1:1:1:1 stoichiometric complex (at least 650 kDa observed, compared with about 220 kDa predicted). To address these questions we undertook a search for presenilin-interacting proteins that differentially affected γ- and ɛ-site cleavage events. Here we report that TMP21, a member of the p24 cargo protein family, is a component of presenilin complexes and differentially regulates γ-secretase cleavage without affecting ɛ-secretase activity.


Journal of Biological Chemistry | 2003

APH-1 Interacts with Mature and Immature Forms of Presenilins and Nicastrin and May Play a Role in Maturation of Presenilin·Nicastrin Complexes

Yongjun Gu; Fusheng Chen; Nobuo Sanjo; T. Kawarai; Hiroshi Hasegawa; Monica Duthie; Wenping Li; Xueying Ruan; Anchla Luthra; Howard T.J. Mount; Anurag Tandon; Paul E. Fraser; Peter St George-Hyslop

APH-1 and PEN-2 genes modulate the function of nicastrin and the presenilins in Caenorhabditis elegans. Preliminary studies in transfected mammalian cells overexpressing tagged APH-1 proteins suggest that this genetic interaction is mediated by a direct physical interaction. Using the APH-1 protein encoded on human chromosome 1 (APH-11L; also known as APH-1a) as an archetype, we report here that endogenous forms of APH-1 are predominantly expressed in intracellular membrane compartments, including the endoplasmic reticulum andcis-Golgi. APH-1 proteins directly interact with immature and mature forms of the presenilins and nicastrin within high molecular weight complexes that display γ- and ε-secretase activity. Indeed APH-1 proteins can bind to the nicastrin Δ312–369 loss of function mutant, which does not undergo glycosylation maturation and is not trafficking beyond the endoplasmic reticulum. The levels of expression of endogenous APH-11L can be suppressed by overexpression of any other members of the APH-1 family, suggesting that their abundance is coordinately regulated. Finally, although the absence of APH-1 destabilizes the presenilins, in contrast to nicastrin and PEN-2, APH-1 itself is only modestly destabilized in cells lacking functional expression of presenilin 1 or presenilin 2. Taken together, our data suggest that APH-1 proteins, and APH-11 in particular, may have a role in the initial assembly and maturation of presenilin·nicastrin complexes.


Science Translational Medicine | 2016

Quantifying prion disease penetrance using large population control cohorts

Eric Vallabh Minikel; Sonia M. Vallabh; Monkol Lek; Karol Estrada; Kaitlin E. Samocha; J. Fah Sathirapongsasuti; Cory Y. McLean; Joyce Y. Tung; Linda P C Yu; Pierluigi Gambetti; Janis Blevins; Shulin Zhang; Yvonne Cohen; Wei Chen; Masahito Yamada; Tsuyoshi Hamaguchi; Nobuo Sanjo; Hidehiro Mizusawa; Yosikazu Nakamura; Tetsuyuki Kitamoto; Steven J. Collins; Alison Boyd; Robert G. Will; Richard Knight; Claudia Ponto; Inga Zerr; Theo F. J. Kraus; Sabina Eigenbrod; Armin Giese; Miguel Calero

Large genomic reference data sets reveal a spectrum of pathogenicity in the prion protein gene and provide genetic validation for a therapeutic strategy in prion disease. Share trumps rare No longer just buzz words, “patient empowerment” and “data sharing” are enabling breakthrough research on rare genetic diseases. Although more than 100,000 genetic variants are believed to drive disease in humans, little is known about penetrance—the probability that a mutation will actually cause disease in the carrier. This conundrum persists because small sample sizes breed imperfect alliance estimates between mutations and disease risk. Now, a patient-turned-scientist joined with a large bioinformatics team to analyze vast amounts of shared data—from the Exome Aggregation Consortium and the 23andMe database—to provide insights into genetic-variant penetrance and possible treatment approaches for a rare, fatal genetic prion disease. More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance—the probability that a carrier of the purported disease-causing genotype will indeed develop the disease—is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression.


Brain | 2010

Prospective 10-year surveillance of human prion diseases in Japan

Ichiro Nozaki; Tsuyoshi Hamaguchi; Nobuo Sanjo; Moeko Noguchi-Shinohara; Kenji Sakai; Yosikazu Nakamura; Takeshi Sato; Tetsuyuki Kitamoto; Hidehiro Mizusawa; Fumio Moriwaka; Yusei Shiga; Yoshiyuki Kuroiwa; Masatoyo Nishizawa; Shigeki Kuzuhara; Takashi Inuzuka; Masatoshi Takeda; Shigetoshi Kuroda; Koji Abe; Hiroyuki Murai; Shigeo Murayama; Jun Tateishi; Ichiro Takumi; Susumu Shirabe; Masafumi Harada; Atsuko Sadakane; Masahito Yamada

We analysed the epidemiological data and clinical features of patients with prion diseases that had been registered by the Creutzfeldt-Jakob Disease Surveillance Committee, Japan, over the past 10 years, since 1999. We obtained information on 1685 Japanese patients suspected as having prion diseases and judged that 1222 patients had prion diseases, consisting of definite (n=180, 14.7%) and probable (n=1029, 84.2%) cases, except for dura mater graft-associated Creutzfeldt-Jakob disease which also included possible cases (n=13, 1.1%). They were classified into 922 (75.5%) with sporadic Creutzfeldt-Jakob disease, 216 (17.7%) with genetic prion diseases, 81 (6.6%) with acquired prion diseases, including 80 cases of dura mater graft-associated Creutzfeldt-Jakob disease and one case of variant Creutzfeldt-Jakob disease, and three cases of unclassified Creutzfeldt-Jakob disease (0.2%). The annual incidence rate of prion disease ranged from 0.65 in 1999 to 1.10 in 2006, with an average of 0.85, similar to European countries. Although methionine homozygosity at codon 129 polymorphism of the prion protein gene was reported to be very common (93%) in the general Japanese population, sporadic Creutzfeldt-Jakob disease in Japan was significantly associated with codon 129 homozygosity (97.5%), as reported in western countries. In sporadic Creutzfeldt-Jakob disease, MM1 type (Parchis classification) is the most common, as in western countries. Among atypical sporadic Creutzfeldt-Jakob disease cases, the MM2 type appeared most common, probably related to the very high proportion of methionine allele in the Japanese population. As for iatrogenic Creutzfeldt-Jakob disease, only dura mater graft-associated Creutzfeldt-Jakob disease cases were reported in Japan and, combined with the data from previous surveillance systems, the total number of dura mater graft-associated Creutzfeldt-Jakob disease was 138, comprising the majority of worldwide dura mater graft-associated Creutzfeldt-Jakob disease patients. Regarding genetic prion diseases, the most common mutation of prion protein gene was V180I (41.2%), followed by P102L (18.1%), E200K (17.1%) and M232R (15.3%), and this distribution was quite different from that in Europe. In particular, V180I and M232R were quite rare mutations worldwide. Patients with V180I or M232R mutations rarely had a family history of prion diseases, indicating that a genetic test for sporadic cases is necessary to distinguish these from sporadic Creutzfeldt-Jakob disease. In conclusion, our prospective 10-year surveillance revealed a frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease, and unique phenotypes of sporadic Creutzfeldt-Jakob disease and genetic prion diseases related to the characteristic distribution of prion protein gene mutations and polymorphisms in Japan, compared with those in western countries.


Stroke | 2003

Increased Expression of Neuronal Apolipoprotein E in Human Brain With Cerebral Infarction

Kazuko Aoki; Toshiki Uchihara; Nobuo Sanjo; Ayako Nakamura; Kenji Ikeda; Kuniaki Tsuchiya; Yoshihiro Wakayama

Background and Purpose— Cellular origin of apolipoprotein E (ApoE) in the human brain and its roles in physiological and pathological conditions remain to be clarified. Methods— Immunolocalization of ApoE was investigated in a series of autopsied human brains with or without infarction. ApoE expression was also estimated on immunoblot on protein extracts from autopsied brains and a cultured neuroblastoma cell line of human origin (GOTO) subjected to an oxidative stress induced by exposure to hydrogen peroxide (0.2 mmol/L). Results— In addition to astrocytes and microglia, neurons and degenerated axons in and around the ischemic foci contained ApoE-like immunoreactivity, which was more intense in recent ischemic foci. Immunoblot demonstrated an increase in expression of ApoE in brain extracts from ischemic lesion, and this increase was also pronounced in the cultured neuroblastoma cell line after the stress. Conclusions— Accumulation of ApoE in neurons in and around ischemic foci of the human brain is related to an increase in ApoE synthesis in neurons, as seen in cultured neuronal cells after oxidative stress. Intrinsic regenerative activity of neuron in reaction to external insults may be related to this increase in ApoE of neuronal origin.


PLOS ONE | 2013

Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay.

Kazunori Sano; Katsuya Satoh; Ryuichiro Atarashi; Hiroshi Takashima; Yasushi Iwasaki; Mari Yoshida; Nobuo Sanjo; Hiroyuki Murai; Hidehiro Mizusawa; Matthias Schmitz; Inga Zerr; Yong-Sun Kim; Noriyuki Nishida

Introduction The definitive diagnosis of genetic prion diseases (gPrD) requires pathological confirmation. To date, diagnosis has relied upon the finding of the biomarkers 14-3-3 protein and total tau (t-tau) protein in the cerebrospinal fluid (CSF), but many researchers have reported that these markers are not sufficiently elevated in gPrD, especially in Gerstmann-Sträussler-Scheinker syndrome (GSS). We recently developed a new in vitro amplification technology, designated “real-time quaking-induced conversion (RT-QUIC)”, to detect the abnormal form of prion protein in CSF from sporadic Creutzfeldt-Jakob disease (sCJD) patients. In the present study, we aimed to investigate the presence of biomarkers and evaluate RT-QUIC assay in patients with gPrD, as the utility of RT-QUIC as a diagnostic tool in gPrD has yet to be determined. Method/Principal Findings 56 CSF samples were obtained from gPrD patients, including 20 cases of GSS with P102L mutation, 12 cases of fatal familial insomnia (FFI; D178N), and 24 cases of genetic CJD (gCJD), comprising 22 cases with E200K mutation and 2 with V203I mutation. We subjected all CSF samples to RT-QUIC assay, analyzed 14-3-3 protein by Western blotting, and measured t-tau protein using an ELISA kit. The detection sensitivities of RT-QUIC were as follows: GSS (78%), FFI (100%), gCJD E200K (87%), and gCJD V203I (100%). On the other hand the detection sensitivities of biomarkers were considerably lower: GSS (11%), FFI (0%), gCJD E200K (73%), and gCJD V203I (67%). Thus, RT-QUIC had a much higher detection sensitivity compared with testing for biomarkers, especially in patients with GSS and FFI. Conclusion/Significance RT-QUIC assay is more sensitive than testing for biomarkers in gPrD patients. RT-QUIC method would thus be useful as a diagnostic tool when the patient or the patients family does not agree to genetic testing, or to confirm the diagnosis in the presence of a positive result for genetic testing.


Journal of Neuroscience Research | 1998

A novel neurotrophic pyrimidine compound MS-818 enhances neurotrophic effects of basic fibroblast growth factor

Nobuo Sanjo; Kiyoshi Owada; Takayoshi Kobayashi; Hidehiro Mizusawa; Akira Awaya; Makoto Michikawa

MS‐818 (2‐piperadino‐6‐methyl‐5‐oxo‐5, 6‐dihydro (7H) pyrrolo [2,3‐d]pyrimidine maleate), a newly synthesized heterocyclic pyrimidine derivative, promotes neurite outgrowth in neuronal cell lines. The survival‐promoting effect of MS‐818 on cultured neurons isolated from mouse cortices was examined. MS‐818 promoted neuronal survival by inhibiting apoptosis in a dose‐dependent manner. MS‐818 treatment also activated mitogen‐activated protein kinase (MAPK) of the extracellular signal regulation kinase 2, as demonstrated by Western blot analysis. The MAPK activation level in the cultures treated with MS‐818 was almost equivalent to that in cultures treated with nerve growth factor but was less than that in cultures treated with epidermal growth factor and basic fibroblast growth factor (bFGF). MAPK was activated within 3 min after the addition of MS‐818, and its activity level returned to baseline within 120 min. Its activation was protein kinase C independent. We further investigated the effect of concurrent treatment with MS‐818 and bFGF on neuronal survival. MS‐818 enhanced the neuronal survival‐promoting effect of bFGF in shifting the half‐maximally effective dose from 2.1 ng/ml to 0.036 ng/ml in the sigmoidal dose effect of bFGF and permitted nearly maximum MAPK activation. The enhancement by MS‐818 of the neuronal survival‐promoting effect of bFGF was accompanied by sustained activation of MAPK to a degree that far exceeded, in magnitude and duration, the cooperative effect of MS‐818 and bFGF. These results indicate that MS‐818 promotes neuronal survival and enhances the neurotrophic actions of bFGF through stimulation of synchronous signals that may elevate MAPK levels within neurons. J. Neurosci. Res. 54:604–612, 1998.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Insight into the frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease in Japan

Tsuyoshi Hamaguchi; Kenji Sakai; Moeko Noguchi-Shinohara; Ichiro Nozaki; Ichiro Takumi; Nobuo Sanjo; Atsuko Sadakane; Yosikazu Nakamura; Tetsuyuki Kitamoto; Nobuhito Saito; Hidehiro Mizusawa; Masahito Yamada

Objective More than 60% of patients worldwide with Creutzfeldt-Jakob disease (CJD) associated with dura mater graft (dCJD) have been diagnosed in Japan. The remarkable frequency of dura mater grafts in Japan may possibly contribute to the elevated incidence of dCJD, but reasons for the disproportionate use of this procedure in Japan remain unclear. We investigated differences between dCJD patients in Japan and those elsewhere to help explain the more frequent use of cadaveric dura mater and the high incidence of dCJD in Japan. Methods We obtained data on dCJD patients in Japan from the Japanese national CJD surveillance programme and on dCJD patients in other countries from the extant literature. We compared the demographic, clinical and pathological features of dCJD patients in Japan with those from other countries. Results Data were obtained for 142 dCJD patients in Japan and 53 dCJD patients elsewhere. The medical conditions preceding dura mater graft transplantation were significantly different between Japan and other countries (p<0.001); in Japan, there were more cases of cerebrovascular disease and hemifacial spasm or trigeminal neuralgia. Patients with dCJD in Japan received dura mater graft more often for non-life-threatening conditions, such as meningioma, hemifacial spasm and trigeminal neuralgia, than in other countries. Conclusions Differences in the medical conditions precipitating dura mater graft may contribute to the frequent use of cadaveric dura mater and the higher incidence of dCJD in Japan.


Journal of Alzheimer's Disease | 2010

Presenilin-1 Holoprotein is an Interacting Partner of Sarco Endoplasmic Reticulum Calcium-ATPase and Confers Resistance to Endoplasmic Reticulum Stress

Haifeng Jin; Nobuo Sanjo; Toshiki Uchihara; Kazuhiko Watabe; Peter St George-Hyslop; Paul E. Fraser; Hidehiro Mizusawa

Presenilin-1 (PSEN1) is a primary component of the gamma-secretase complex, and total levels of its holoprotein and endoproteolytic fragments are tightly regulated. We examined the effects of several types of endoplasmic reticulum (ER) stress on quantitative changes in the levels of PSEN1 mRNA, holoprotein, and fragments. The ER stress-inducing chemical compounds tunicamycin, brefeldin-A, thapsigargin, and staurosporine were added to the culture media of various human cell lines. Tunicamycin treatment caused a doubling of PSEN1 holoprotein production in HEK293 cells and an increase in holoprotein production to approximately 180% in GOTO human neuroblastoma and KNS-42 human glioma cell lines, without changing the amounts of PSEN1 N- or C-terminal fragments. The elevated holoprotein level in HEK293 cells was accompanied by an increase in PSEN1 mRNA expression. HEK293 cells that stably overexpressed PSEN1 holoprotein showed increased resistance to ER stress induced by tunicamycin, but they did not show resistance to ER stress caused by thapsigargin, a specific inhibitor of sarco ER calcium-ATPase (SERCA). In wild-type HEK293 cells under ER stress induced by tunicamycin, an increased amount of SERCA interacted with PSEN1 holoprotein. PSEN1 production varied among cell types and circumstances. The results suggested that the holoprotein forms a complex with the SERCA channel and participates in the regulation of intracellular calcium homeostasis. These findings provide support for the calcium hypothesis of Alzheimers disease.

Collaboration


Dive into the Nobuo Sanjo's collaboration.

Top Co-Authors

Avatar

Hidehiro Mizusawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Takanori Yokota

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoru Ishibashi

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge