Noorjahan Banu Mohammed Alitheen
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Noorjahan Banu Mohammed Alitheen is active.
Publication
Featured researches published by Noorjahan Banu Mohammed Alitheen.
BioMed Research International | 2013
Norlaily Mohd Ali; Hamidah Mohd Yusof; Kamariah Long; Swee Keong Yeap; Wan Yong Ho; Boon Kee Beh; Soo Peng Koh; Mohd Puad Abdullah; Noorjahan Banu Mohammed Alitheen
Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean.
Journal of Chromatography A | 2010
Wei Boon Yap; Beng Ti Tey; Noorjahan Banu Mohammed Alitheen; Wen Siang Tan
Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
Cancer Cell International | 2013
Nadiah Abu; Wan Yong Ho; Swee Keong Yeap; Muhammad Nadeem Akhtar; Mohd Puad Abdullah; Abdul Rahman Omar; Noorjahan Banu Mohammed Alitheen
Plant-based compounds have been in the spotlight in search of new and promising drugs. Flavokawain A, B and C are naturally occurring chalcones that have been isolated from several medicinal plants; namely the piper methysticum or commercially known as the kava-kava. Multiple researches have been done to evaluate the bioactivities of these compounds. It has been shown that all three flavokawains may hold promising anti-cancer effects. It has also been revealed that both flavokawain A and B are involved in the induction of cell cycle arrest in several cancer cell lines. Nevertheless, flavokawain B was shown to be more effective in treating in vitro cancer cell lines as compared to flavokawain A and C. Flavokawain B also exerts antinociceptive effects as well as anti-inflammation properties. This mini-review attempts to discuss the biological properties of all the flavokawains that have been reported.
Journal of Nanomaterials | 2013
S. Kanagesan; Mansor Hashim; Subramani Tamilselvan; Noorjahan Banu Mohammed Alitheen; Ismayadi Ismail; Ghazaleh Bahmanrokh
Nanocrystalline magnesium ferrites (MgFe2O4) were produced with an average grain size of about 20 nm. Their structural, morphological, and magnetic characterizations were studied. The cytotoxic effects of MgFe2O4 nanoparticles in various concentrations (25, 50, 100, 200, 400, and 800 µg/mL) against MCF-7 human breast cancer cellswere analyzed. MTT assay findings suggest the increased accumulation of apoptotic bodies with the increasing concentration of MgFe2O4 nanoparticles in a dose-dependent manner. Flow cytometry analysis shows that MgFe2O4 nanoparticles in 800 µg/mL concentration aremore cytotoxic compared to vehicle-treated MCF-7 cells and suggests their potential utility as a drug carrier in the treatment of cancer.
Ecotoxicology and Environmental Safety | 2013
Mohammad Ismail Hossain; Mohanad El-Harbawi; Noorjahan Banu Mohammed Alitheen; Yousr Abdulhadi Noaman; Jean-Marc Lévêque; Chun-Yang Yin
Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
Molecules | 2013
Nadiah Abu; Muhammad Nadeem Akhtar; Wan Yong Ho; Swee Keong Yeap; Noorjahan Banu Mohammed Alitheen
Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
African Journal of Biotechnology | 2012
Wan Yong Ho; Ws Liang; Swee Keong Yeap; Boon-Kee Beh; Ahn Yousr; Noorjahan Banu Mohammed Alitheen
Vernonia amygdalina water extract was previously found as a potential in vitro antioxidant agent. In this study, the in vitro and in vivo antioxidant activity of V. amygdalina spray dried water extract were quantified by using DPPH radical scavenging assay, superoxide dismutase (SOD) activity, malondialdehyde (MDA) level and total antioxidant capacity (TAOC). In vitro DPPH assay showed that, V. amygdalina spray dried water extract was a moderate antioxidant agent when compared with vitamin C. For in vivo test, increased SOD and TAOC and reduced MDA levels were observed on the organs and blood of the animal treated with the extract. It was concluded that V. amygdalina spray dried water extract is a potential antioxidant agent that can protect oxidation stress of the cells in the organ. Key words: Antioxidant, in vivo, Vernonia amygdalina .
Molecules | 2016
Samikannu Kanagesan; Sidek Hj. Ab Aziz; Mansor Hashim; Ismayadi Ismail; Subramani Tamilselvan; Noorjahan Banu Mohammed Alitheen; Mallappa Kumara Swamy; Bandaru Purna Chandra Rao
Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
Molecules | 2013
Muhammad Nadeem Akhtar; Seema Zareen; Swee Keong Yeap; Wan Yong Ho; Kong Mun Lo; Aurangzeb Hasan; Noorjahan Banu Mohammed Alitheen
Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 μg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
Journal of Bioscience and Bioengineering | 2010
Jane Chiar Jenn Liew; Wen Siang Tan; Noorjahan Banu Mohammed Alitheen; Eng-Seng Chan; Beng Ti Tey
Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.