Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norbert M. Satchivi is active.

Publication


Featured researches published by Norbert M. Satchivi.


Bioorganic & Medicinal Chemistry | 2016

The discovery of Arylex™ active and Rinskor™ active: Two novel auxin herbicides.

Jeffrey Epp; Anita Lenora Alexander; Terry William Balko; Ann M. Buysse; William Kirkland Brewster; Kristy Bryan; John F. Daeuble; Stephen Craig Fields; Roger E. Gast; Renard Antonio Green; Nicholas Martin Irvine; William C. Lo; Christian T. Lowe; James M. Renga; John Sanders Richburg; James Ruiz; Norbert M. Satchivi; Paul R. Schmitzer; Thomas L. Siddall; Jeffery Webster; Monte R. Weimer; Gregory T. Whiteker; Carla N. Yerkes

Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates (picloram, clopyralid, and aminopyralid). In the last 10 years, two novel pyridine-2-carboxylate (or picolinate) herbicides were discovered at Dow AgroSciences. This paper will describe the structure activity relationship study that led to the discovery of the 6-aryl-picolinate herbicides Arylex™ active (2005) and Rinskor™ active (2010). While Arylex was developed primarily for use in cereal crops and Rinskor is still in development primarily for use in rice crops, both herbicides will also be utilized in additional crops.


Pest Management Science | 2018

Weed resistance to synthetic auxin herbicides

Roberto Busi; Danica E. Goggin; Ian Heap; Michael J. Horak; Mithila Jugulam; Robert A. Masters; Richard M. Napier; Dilpreet S Riar; Norbert M. Satchivi; Joel Torra; Phillip H. Westra; Terry R. Wright

Abstract Herbicides classified as synthetic auxins have been most commonly used to control broadleaf weeds in a variety of crops and in non‐cropland areas since the first synthetic auxin herbicide (SAH), 2,4‐D, was introduced to the market in the mid‐1940s. The incidence of weed species resistant to SAHs is relatively low considering their long‐term global application with 30 broadleaf, 5 grass, and 1 grass‐like weed species confirmed resistant to date. An understanding of the context and mechanisms of SAH resistance evolution can inform management practices to sustain the longevity and utility of this important class of herbicides. A symposium was convened during the 2nd Global Herbicide Resistance Challenge (May 2017; Denver, CO, USA) to provide an overview of the current state of knowledge of SAH resistance mechanisms including case studies of weed species resistant to SAHs and perspectives on mitigating resistance development in SAH‐tolerant crops.


Journal of Agricultural and Food Chemistry | 2017

Understanding the Differential Response of Setaria viridis L. (green foxtail) and Setaria pumila Poir. (yellow foxtail) to Pyroxsulam

Norbert M. Satchivi; Gerrit J. deBoer; Jared L. Bell

Green foxtail [Setaria viridis (L) Beauv.] and yellow foxtail [Setaria pumila (Poir.) Roem. & Schult.] are among the most abundant and troublesome annual grass weeds in cereal crops in the Northern Plains of the United States and the Prairie Provinces of Canada. Greenhouse and laboratory experiments were conducted to examine the differential responses of both weed species to foliar applications of the new triazolopyrimidine sulfonamide acetolactate synthase-inhibiting herbicide, pyroxsulam, and to determine the mechanism(s) of differential weed control. Foliar applications of pyroxsulam resulted in >90% control of yellow foxtail at rates between 7.5 and 15 g ai ha-1, whereas the same rates resulted in a reduced efficacy on green foxtail (≤81%). The absorption and translocation of [14C]pyroxsulam in green and yellow foxtail were similar and could not explain the differential whole-plant efficacy. Studies with [14C]pyroxsulam revealed a higher percentage of absorbed pyroxsulam was metabolized into an inactive metabolite in the treated leaf of green foxtail than in the treated leaf of yellow foxtail. Metabolism studies demonstrated that, 48 h after application, 50 and 35% of pyroxsulam in the treated leaf was converted to 5-hydroxy-pyroxsulam in green and yellow foxtail, respectively. The acetolactate synthase (ALS) inhibition assay showed that ALS extracted from green foxtail was more tolerant to pyroxsulam than the enzyme extracted from yellow foxtail was. The in vitro ALS assay showed IC50 values of 8.39 and 0.26 μM pyroxsulam for green and yellow foxtail, respectively. The ALS genes from both green and yellow foxtail were sequenced and revealed amino acid differences; however, the changes are not associated with known resistance-inducing mutations. The differential control of green and yellow foxtail following foliar applications of pyroxsulam was attributed to differences in both metabolism and ALS sensitivity.


Environmental Toxicology and Chemistry | 2014

A simple method to determine mineralization of 14C-labeled compounds in soil

Kyung Myung; Michael W. Madary; Norbert M. Satchivi

Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices.


Archive | 2008

Synergistic herbicidal composition containing certain pyridine or pyrimidine carboxylic acids and certain cereal and rice herbicides

Norbert M. Satchivi; Paul R. Schmitzer; Carla N. Yerkes; Terry R. Wright


Archive | 2013

HERBICIDAL COMPOSITIONS COMPRISING 4-AMINO-3-CHLORO-5-FLUORO-6-(4-CHLORO-2-FLUORO-3-METHOXYPHENYL) PYRIDINE-2-CARBOXYLIC ACID OR A DERIVATIVE THEREOF AND SYNTHETIC AUXIN HERBICIDES

Carla N. Yerkes; Richard K. Mann; Norbert M. Satchivi; Paul R. Schmitzer


Archive | 2011

CONTROL OF PHENOXYALKANOIC ACID HERBICIDE-RESISTANT WEEDS WITH 4-AMINO-3-CHLORO-6-(4-CHLORO-2-FLUORO-3-METHOXYPHENYL)PYRIDINE-2-CARBOXYLIC ACID AND ITS SALTS OR ESTERS

Norbert M. Satchivi; Paul R. Schmitzer


Archive | 2011

Synergistic herbicide/fungicide composition containing certain pyridine carboxylic acids and certain fungicides

Norbert M. Satchivi; Paul R. Schmitzer


Pesticide Biochemistry and Physiology | 2006

A nonlinear, dynamic, simulation model for transport, and whole plant allocation of systemic xenobiotics following foliar application. IV: Physicochemical properties requirements for optimum absorption and translocation

Norbert M. Satchivi; Edward W. Stoller; Loyd M. Wax; Donald P. Briskin


Archive | 2013

Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and vlcfa and lipid synthesis inhibiting herbicides

Carla N. Yerkes; Richard K. Mann; Ikuo Shiraishi; Shingo Yanagiyama; Norbert M. Satchivi

Collaboration


Dive into the Norbert M. Satchivi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge