Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman D. Delamater is active.

Publication


Featured researches published by Norman D. Delamater.


Physics of Plasmas | 1996

Symmetry experiments in gas‐filled hohlraums at NOVA

Norman D. Delamater; T. J. Murphy; Allan A. Hauer; R. L. Kauffman; A. L. Richard; E. L. Lindman; Glenn Ronald Magelssen; Bernhard H. Wilde; David B. Harris; B. A. Failor; J. M. Wallace; L. V. Powers; Stephen M. Pollaine; L. J. Suter; R. E. Chrien; T. D. Shepard; Harvey A. Rose; E. A. Williams; M. B. Nelson; M. D. Cable; J. B. Moore; M. A. Salazar; K. Gifford

Understanding drive symmetry in gas‐filled hohlraums is currently of interest because the baseline design of the indirect drive ignition target for the planned National Ignition Facility uses a gas‐filled hohlraum. This paper reports on the results of a series of experiments performed at the Nova laser [C. Bibeau et al. Appl. Opt. 31, 5799 (1992)] facility at Lawrence Livermore National Laboratory with the goal of understanding time‐dependent drive symmetry in gas filled hohlraums. Time‐dependent symmetry data from capsule implosions and reemission targets in gas‐filled hohlraums are discussed. Results of symmetry measurements using thin wall gas‐filled hohlraums are also discussed. The results show that the gas is effective in impeding the motion of the wall blowoff material, and that the resulting implosion performance of the capsule is not significantly degraded from vacuum results. The implosion symmetry in gas differs from vacuum results with similar laser pointing indicating a shift in beam position...


Physics of Plasmas | 1995

The role of symmetry in indirect‐drive laser fusion

Allan A. Hauer; L. Suter; Norman D. Delamater; D. Ress; L. Powers; Glenn Ronald Magelssen; David B. Harris; O. Landen; E. Lindmann; W. Hsing; D. C. Wilson; P. Amendt; R. Thiessen; R. Kopp; D. Phillion; B. Hammel; D. N. Baker; J. M. Wallace; R. Turner; M. Cray; Robert G. Watt; J. Kilkenny; J. M. Mack

Good radiation drive symmetry will be crucial for achieving ignition in laboratory inertial fusion experiments. The indirect‐drive inertial confinement fusion (ICF) method utilizes the soft x‐ray field in a radiation‐containing cavity, or hohlraum, to help achieve a high degree of symmetry. Achievement of the conditions necessary for ignition and gain will require experimental fine tuning of the drive symmetry. In order to make tuning possible, a significant effort has been devoted to developing symmetry measurement techniques. These techniques have been applied to a series of experiments that give a graphic picture of the symmetry conditions in the complex hohlraum environment. These experiments have been compared with detailed, fully integrated theoretical modeling. The ultimate goal of this work is the detailed understanding of symmetry conditions and the methods for their control. Comparison with experiments provides crucial benchmarking for the modeling—a key element in planning for ignition.


Physics of fluids. B, Plasma physics | 1993

X-ray spectroscopy of high-energy density inertial confinement fusion plasmas

C. J. Keane; B. A. Hammel; D. R. Kania; J. D. Kilkenny; R.W. Lee; Albert L. Osterheld; L. J. Suter; R. C. Mancini; C. F. Hooper; Norman D. Delamater

Analysis is presented of K‐ and L‐shell spectra obtained from Ar and Xe dopants seeded into the fuel region of plastic capsules indirectly imploded using the Nova laser. Stark broadening measurements of the n=3‐1 lines in H‐ and He‐like Ar (Ar Ly‐β and He‐β, respectively) are used to infer fuel electron density, while spatially averaged fuel electron temperature is deduced from the ratio of the intensities of these lines. Systematic variations in Ar spectral features are observed as a function of drive conditions. A spectral postprocessing code has been developed to simulate experimental spectra by taking into account spatial gradients and line transfer effects, and shows good agreement with experimental data. It is shown that correct modeling of the x‐ray emission requires a proper treatment of the coupled radiative transfer and kinetics problem. Continuum lowering effects are shown not to affect diagnostic line ratios, within the confines of a simple model. A recently developed diagnostic based on fitti...


Physics of Plasmas | 1999

Shock structuring due to fabrication joints in targets

S. R. Goldman; S. E. Caldwell; Mark D. Wilke; D. C. Wilson; Cris W. Barnes; W. W. Hsing; Norman D. Delamater; G. T. Schappert; J. W. Grove; E. L. Lindman; J. M. Wallace; R. P. Weaver; A. M. Dunne; M. J. Edwards; P. Graham; B. R. Thomas

The use of copper-doped beryllium ablators on National Ignition Facility [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] targets, in place of plastic, can require the bonding together of hemispheres with a joint of differing composition. Indirect drive experiments have been conducted on the Nova laser [J. L. Emmet, W. F. Krupke, and J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1983)], and the resulting shock structuring compared with code simulations. It is concluded that one of the available codes, the RAGE code [R. M. Baltrusaitis et al., Phys. Fluids 8, 2471 (1996)] provides useful insight into the effect of joints. This code is then employed to obtain a physical picture of the shock front nonuniformity in terms of a secondary rarefaction and an oblique shock interacting with the main shock that propagates in the absence of the joint. A simple analysis reinforces this picture.


Review of Scientific Instruments | 1992

K‐ and L‐shell x‐ray spectroscopy of indirectly driven implosions (invited)

B. A. Hammel; C. J. Keane; D. R. Kania; J. D. Kilkenny; R.W. Lee; R. Pasha; R. E. Turner; Norman D. Delamater

Time‐resolved x‐ray spectroscopy is used to study the implosion of indirectly driven inertial confinement fusion capsules on the Nova laser. Through the use of high‐Z dopants (Ar and Xe) in the fuel, measurements of the peak temperature, from emission line ratios, and density, from line broadening, are obtained. These measurements indicate peak electron temperatures of ∼1–1.6 keV and electron (and deuteron) densities in the range of 1.0–2.0×1024 cm−3, depending on the type of laser drive used. The higher densities are achieved on targets that are driven with a shaped laser drive that allows a more isentropic compression of the fuel. Emission from high‐Z pusher dopants have also been studied. These dopants can provide information on pusher conditions and can be used to study mix at the pusher fuel interface.


Review of Scientific Instruments | 1995

Review of drive symmetry measurement and control experiments on the Nova laser system (invited)

Allan A. Hauer; Norman D. Delamater; D. Ress; W. W. Hsing; L. Suter; L. Powers; O. Landen; David B. Harris; R. Thiessen; Glenn Ronald Magelssen; E. L. Lindman; D. Phillion; P. Amendt; Robert G. Watt; B. Hammel

Good radiation drive symmetry is crucial for achieving ignition in laboratory inertial fusion experiments. X‐ray drive symmetry in hohlraums has been the subject of investigation for more than four years and a great deal of progress has been made. Over the last two to three years, a concerted series of (indirect) drive symmetry experiments has been performed on the Nova laser system and is the subject of the present paper. The goals of this work have been to develop measurement techniques and to apply them to symmetry variation and control experiments. The principal diagnostic has utilized the symmetry signature impressed on the dense core of a target imploded by the hohlraum x‐ray environment. The core is distorted by drive asymmetries and x‐ray imaging of this core provides a mapping that can be compared with theoretical modeling and thus related to specific amounts of drive asymmetry. We will describe the instruments and measurement techniques used in these experiments and present representative data a...


Review of Scientific Instruments | 1992

Density and temperature diagnostic based on the Ar He β line and associated Li‐like satellites

R. C. Mancini; C. F. Hooper; Norman D. Delamater; Allan A. Hauer; C. J. Keane; B. A. Hammel; J. K. Nash

We have modeled the temperature and density dependence of the Li‐like satellites of the Ar He β line by performing NLTE kinetic modeling of level populations in conjunction with Stark broadening calculations. Composite line profiles are computed including resonance and satellite line transitions that have built‐in the temperature and density dependence characteristic of the level populations and Stark broadening of these transitions. These synthetic spectra can be used to analyze experimental data, providing a simultaneous diagnostic of temperature and density.


Physics of Plasmas | 2000

Demonstration of time-dependent symmetry control in hohlraums by drive-beam staggering

R. E. Turner; Peter A. Amendt; O. L. Landen; S. G. Glendinning; P. M. Bell; C. Decker; B. A. Hammel; D. H. Kalantar; D. Lee; R. J. Wallace; D. K. Bradley; M. Cable; R. S. Craxton; Robert L. Kremens; W. Seka; Jeremy D. Schnittman; K. Thorp; T. J. Murphy; Norman D. Delamater; Cris W. Barnes; Allan A. Hauer; Glenn Ronald Magelssen; J. M. Wallace

Indirect-drive inertial confinement fusion makes use of cavities constructed of high atomic number materials to convert laser power into x-rays for ablatively driving an implosion capsule. Obtaining spatially uniform drive on the capsule requires a careful balancing between the laser absorption region (high drive) and the laser entrance holes (low drive). This balancing is made difficult because of plasma expansion, and the associated movement of the laser absorption region with time. This paper reports the first experimental demonstration of compensation for this motion by using different laser beams at different times, in agreement with modeling.


Physics of Plasmas | 2000

Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova

Norman D. Delamater; E. L. Lindman; Glenn Ronald Magelssen; B. H. Failor; T. J. Murphy; Allan A. Hauer; Peter L. Gobby; J. B. Moore; V. Gomez; K. Gifford; R. L. Kauffman; O. L. Landen; B. A. Hammel; G. Glendinning; L. V. Powers; L. J. Suter; S. Dixit; Robert R. Peterson; A. L. Richard

Execution and modeling of drive symmetry experiments in gas-filled hohlraums have been pursued to provide both a better understanding of radiation symmetry in such hohlraums and to verify the accuracy of the design tools which are used to predict target performance for the National Ignition Facility (NIF) [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. In this paper, the results of a series of drive symmetry experiments using gas-filled hohlraums at the Nova laser facility [C. Bibeau et al., Appl. Opt. 31, 5799 (1992)] at Lawrence Livermore National Laboratory are presented. A very important element of these experiments was the use of kineform phase plates (KPP) to smooth the Nova beams. The effect of smoothing the ten Nova beams with KPP phase plates is to remove most of the beam bending which had been observed previously, leaving a residual bending of only 1.5°, equivalent to a 35 μm pointing offset at the hohlraum wall. The results show that the symmetry variation with pointing of implosions in gas-filled ho...


Physics of Plasmas | 2000

Moderate-convergence inertial confinement fusion implosions in tetrahedral hohlraums at Omega

G. R. Bennett; J. M. Wallace; T. J. Murphy; R. E. Chrien; Norman D. Delamater; Peter L. Gobby; Allan A. Hauer; K. A. Klare; John A. Oertel; Robert G. Watt; Daniel C. Wilson; William S. Varnum; R. S. Craxton; V. Yu. Glebov; Jeremy David Schnittman; C. Stoeckl; Stephen M. Pollaine; R. E. Turner

A highly uniform thermal x-radiation field for indirect-drive inertial confinement fusion implosions may be obtained by irradiating a four-hole, tetrahedral geometry, spherical hohlraum with all 60 Omega laser beams. Implosion studies and calculations [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)] indicate a drive uniformity comparable to that expected for the National Ignition Facility [J. A. Painser et al., Laser Focus World 30, 75 (1994)]. With 60 beams distributed over the cavity wall, tetrahedral hohlraums have a natural insensitivity to power balance and pointing errors. Standard, smooth Nova capsules imploded with this drive indicate that moderate convergence-ratio implosions, Cr∼18, have measured-neutron yield to calculated-clean-one-dimensional-neutronyield ratios similar to those previously investigated using the comparatively poor drive uniformity of Nova cylindrical hohlraums. This may indicate that a nonsymmetry-related neutron yield degradation mechanism, e.g., hydrodynamic mixing ...

Collaboration


Dive into the Norman D. Delamater's collaboration.

Top Co-Authors

Avatar

Glenn Ronald Magelssen

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Allan A. Hauer

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. M. Wallace

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert G. Watt

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Batha

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. A. Hammel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Rothman

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar

Cris W. Barnes

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter L. Gobby

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge