Nuria San Martín
Centro Nacional de Investigaciones Cardiovasculares
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nuria San Martín.
Diabetes | 2013
Laura M. Pérez; Aurora Bernal; Nuria San Martín; Margarita Lorenzo; Sonia Fernández-Veledo; Beatriz G. Gálvez
Adipose-derived stem cells (ASCs) are promising candidates for autologous cell-based regeneration therapies by virtue of their multilineage differentiation potential and immunogenicity; however, relatively little is known about their role in adipose tissue physiology and dysfunction. Here we evaluated whether ASCs isolated from nonobese and obese tissue differed in their metabolic characteristics and differentiation potential. During differentiation to mature adipocytes, mouse and human ASCs derived from nonobese tissues both increased their insulin sensitivity and inhibition of lipolysis, whereas obese-derived ASCs were insulin-resistant, showing impaired insulin-stimulated glucose uptake and resistance to the antilipolytic effect of insulin. Furthermore, obese-derived ASCs showed enhanced release of proinflammatory cytokines and impaired production of adiponectin. Interestingly, the delivery of cytosol from control ASCs into obese-derived ASCs using a lipid-based, protein-capture methodology restored insulin sensitivity on glucose and lipid metabolism and reversed the proinflammatory cytokine profile, in part due to the restoration of Lin28 protein levels. In conclusion, glucose and lipid metabolism as well as maturation of ASCs is truncated in an obese environment. The reversal of the altered pathways in obese cells by delivery of normal subcellular fractions offers a potential new tool for cell therapy.
Stem Cells | 2011
Nuria San Martín; Ana M. Cervera; Claudia Cordova; Diego Covarello; Kenneth J. McCreath; Beatriz G. Gálvez
An understanding of cardiac progenitor cell biology would facilitate their therapeutic potential for cardiomyocyte restoration and functional heart repair. Our previous studies identified cardiac mesoangioblasts as precommitted progenitor cells from the postnatal heart, which can be expanded in vitro and efficiently differentiated in vitro and in vivo to contribute new myocardium after injury. Based on their proliferation potential in culture, we show here that two populations of mesoangioblasts can be isolated from explant cultures of mouse and human heart. Although both populations express similar surface markers, together with a panel of instructive cardiac transcription factors, they differ significantly in their cellular content of mitochondria. Slow dividing (SD) cells, containing many mitochondria, can be efficiently differentiated with 5‐azacytidine (5‐aza) to generate cardiomyocytes expressing mature structural markers. In contrast, fast dividing (FD) mesoangioblasts, which contain decreased quantities of mitochondria, do not respond to 5‐aza treatment. Notably, increasing mitochondrial numbers using pharmacological nitric oxide (NO) donors reverses the differentiation block in FD mesoangioblasts and leads to a progressive maturation to cardiomyocytes; conversely decreasing mitochondrial content, using respiratory chain inhibitors and chloramphenicol, perturbs cardiomyocyte differentiation in SD populations. Furthermore, isolated cardiac mesoangioblasts from aged mouse and human hearts are found to be almost exclusively mitochondria‐low FD populations, which are permissive for cardiomyocyte differentiation only after NO treatment. Taken together, this study illustrates a key role for mitochondria in cardiac mesoangioblast differentiation and raises the interesting possibility that treatments, which increase cellular mitochondrial content, may have utility for cardiac stem cell therapy. STEM CELLS 2011;29:1064–1074
PLOS ONE | 2009
Beatriz G. Gálvez; Nuria San Martín; Carlos A. Rodriguez
Most adult tissues harbour a stem cell subpopulation (Mesenchymal Precursors or MPs) that represent a small proportion of the total cell number and have the potential to differentiate into several cell types within the mesenchymal lineage. In adipose tissue, adipocytes account for two-thirds of the total cell number. The remaining cells include blood and endothelial cells, along with adipocyte precursors (adipose MPs). Obesity is defined as an excess of body fat that frequently results in a significant impairment of health. The ob/ob mice bear a mutation in the ob gene that causes a deficiency in the hormone leptin and hence obesity. Here, we present evidence that ob/ob mice have a dramatic decrease in the resident MP pool of several tissues, including squeletal muscle, heart, lung and adipose tissue. Moreover, we show that that there is a migration of MP cells from distant organs, as well as homing of these cells to the adipose tissue mass of the ob/ob mice. We call this process adipotaxis. Once in the adipose tissue, migrant MPs undergoe adipose differentiation, giving rise to new differentiated adipocytes within the adipose mass. Finally, we provide evidence that adipotaxis is largely explained by the production of high levels of Tumor Necrosis Factor-alpha (TNF-α) within the ob/ob adipose tissue. The therapeutic implications for human obesity as well as for regenerative medicine are further discussed in this paper.
PLOS ONE | 2015
Laura M. Pérez; Aurora Bernal; Beatriz de Lucas; Nuria San Martín; Annalaura Mastrangelo; Antonia García; Coral Barbas; Beatriz G. Gálvez
Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.
Archives of Physiology and Biochemistry | 2013
Laura M. Pérez; Aurora Bernal; Nuria San Martín; Beatriz G. Gálvez
Abstract Efficient delivery of stem cells to target tissues is a major problem in regenerative medicine. Adipose derived stem cells have been proposed as important tools in cell therapy for recovering tissues after damage. Nevertheless, the ability of these ASCs to migrate or invade in order to reach the tissue of interest has not been tested so far. In this study we present evidence that the ASCs derived from obese subjects present a detrimental ability to migrate and invade in comparison with ASCs derived from control subjects. Besides, obese-derived ASCs are unable to respond to certain stimuli and to form enough capillaries after stimulation. We propose that the use of specific cytokines could overcome these deficiencies of the obese environment, offering a tool to optimize cell therapy.
Archives of Physiology and Biochemistry | 2011
Nuria San Martín; Beatriz G. Gálvez
Obesity is a pandemic disorder that can be defined as a chronic excess of adipose tissue that increases the risk of suffering chronic diseases such as, diabetes, arterial hypertension, stroke and some forms of cancer. We now know that adipose tissue, aside from being an energy store, is also an important endocrine and metabolic organ. Recently, new mechanisms that control obesity have been identified, such as the equilibrium between white and brown adipose tissue, the localization of adipose mass (visceral or ventral), and the presence of adipose and mesenchymal stem cells. In this review, we describe the implication of these stem cell types in the normal physiology and dysfunction of adipose tissue. These stem cells provide a potential target for modulating the response of the body to obesity and diabetes, as well as a potential tool for regenerative medicine.
PLOS ONE | 2012
Aurora Bernal; María Fernández; Laura M. Pérez; Nuria San Martín; Beatriz G. Gálvez
Aims The present study reports an easy and efficient method for obtaining adult mesenchymal precursors from different adult mouse tissues. Materials and Methods We describe the isolation and expansion of mesenchymal precursors from skin and lung by a non-enzymatic method. Skin and lung mesenchymal precursors isolated by a modified explant technique were characterized in vitro by defined morphology and by a specific gene expression profile and surface markers. Results and Conclusions Our results show that these precursors express stem cell and mesenchymal surface markers as well as epithelial markers. However, they are negative for markers of endothelium, cardiac and skeletal muscle or adipose tissue, indicating that they have initiated commitment to the tissues from which were isolated. These precursors can migrate without any stimulus and in response to stimuli as SDF1, MCP1 and TNFα and can be differentiated into epithelial lineages. Based on the properties of these precursors from adult tissues, we propose their use as tools for regenerative biomedicine.
Obesity | 2016
Laura M. Pérez; Javier Suárez; Aurora Bernal; Beatriz de Lucas; Nuria San Martín; Beatriz G. Gálvez
The therapeutic potential of adipose‐derived stem cells (ASCs) is reduced by various stress‐inducing conditions that affect tissue homeostasis such as diabetes, aging, and obesity. Previous works have provided evidence of negative effects of obesity on ASC populations, but it is unclear whether this persists after a weight loss. This study evaluated whether weight loss can restore the attenuated properties found in ASCs derived from populations with obesity (oASCs).
Archive | 2016
Laura M. Pérez; Aurora Bernal; Javier Suárez; Beatriz de Lucas; Nuria San Martín; Beatriz G. Gálvez
The therapeutic potential of adipose‐derived stem cells (ASCs) is reduced by various stress‐inducing conditions that affect tissue homeostasis such as diabetes, aging, and obesity. Previous works have provided evidence of negative effects of obesity on ASC populations, but it is unclear whether this persists after a weight loss. This study evaluated whether weight loss can restore the attenuated properties found in ASCs derived from populations with obesity (oASCs).
Stem Cell Reviews and Reports | 2015
Aurora Bernal; Laura M. Pérez; Beatriz de Lucas; Nuria San Martín; Anke Kadow-Romacker; Gustavo R. Plaza; Kay Raum; Beatriz G. Gálvez
Cell-based therapy is a promising approach for many diseases, including ischemic heart disease. Cardiac mesoangioblasts are committed vessel-associated progenitors that can restore to a significant, although partial, extent, heart structure and function in a murine model of myocardial infarction. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive form of mechanical energy that can be delivered into biological tissues as acoustic pressure waves, and is widely used for clinical applications including bone fracture healing. We hypothesized that the positive effects of LIPUS on bone and soft tissue, such as increased cell differentiation and cytoskeleton reorganization, could be applied to increase the therapeutic potential of mesoangioblasts for heart repair. In this work, we show that LIPUS stimulation of cardiac mesoangioblasts isolated from mouse and human heart results in significant cellular modifications that provide beneficial effects to the cells, including increased malleability and improved motility. Additionally, LIPUS stimulation increased the number of binucleated cells and induced cardiac differentiation to an extent comparable with 5′-azacytidine treatment. Mechanistically, LIPUS stimulation activated the BMP-Smad signalling pathway and increased the expression of myosin light chain-2 together with upregulation of β1 integrin and RhoA, highlighting a potentially important role for cytoskeleton reorganization. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore in the field of heart cell therapy.