Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O. A. Hurricane is active.

Publication


Featured researches published by O. A. Hurricane.


Nature | 2014

Fuel gain exceeding unity in an inertially confined fusion implosion

O. A. Hurricane; D. A. Callahan; D. T. Casey; Peter M. Celliers; C. Cerjan; E. L. Dewald; T. R. Dittrich; T. Döppner; D. E. Hinkel; L. Berzak Hopkins; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; A. Pak; H.-S. Park; P. K. Patel; B. A. Remington; J. D. Salmonson; P. T. Springer; R. Tommasini

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium–tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a ‘high-foot’ implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium–tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the ‘bootstrapping’ required to accelerate the deuterium–tritium fusion burn to eventually ‘run away’ and ignite.


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2001

An experimental testbed for the study of hydrodynamic issues in supernovae

H. F. Robey; Jave O. Kane; B. A. Remington; R. P. Drake; O. A. Hurricane; H. Louis; R. J. Wallace; J. P. Knauer; P.A. Keiter; David Arnett; D. D. Ryutov

More than a decade after the explosion of supernova 1987A, unresolved discrepancies still remain in attempts to numerically simulate the mixing processes initiated by the passage of a very strong shock through the layered structure of the progenitor star. Numerically computed velocities of the radioactive 56Ni and 56Co, produced by shock-induced explosive burning within the silicon layer, for example, are still more than 50% too low as compared with the measured velocities. To resolve such discrepancies between observation and simulation, an experimental testbed has been designed on the Omega Laser for the study of hydrodynamic issues of importance to supernovae (SNe). In this paper, results are presented from a series of scaled laboratory experiments designed to isolate and explore several issues in the hydrodynamics of supernova explosions. The results of the experiments are compared with numerical simulations and are generally found to be in reasonable agreement.


Physics of Plasmas | 2016

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

D. S. Clark; C. R. Weber; J. L. Milovich; J. D. Salmonson; A. L. Kritcher; S. W. Haan; B. A. Hammel; D. E. Hinkel; O. A. Hurricane; O. S. Jones; M. M. Marinak; P. K. Patel; H. F. Robey; S. M. Sepke; M. J. Edwards

In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.


Physics of Plasmas | 2014

An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

K. S. Raman; V. A. Smalyuk; D. T. Casey; S. W. Haan; D. Hoover; O. A. Hurricane; J. J. Kroll; A. Nikroo; J. L. Peterson; B. A. Remington; H. F. Robey; D. S. Clark; B. A. Hammel; O. L. Landen; M. M. Marinak; D. H. Munro; Kyle Peterson; J. D. Salmonson

A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.


Physics of Plasmas | 2015

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)

R. Tommasini; J. E. Field; B. A. Hammel; O. L. Landen; S. W. Haan; C. Aracne-Ruddle; L. R. Benedetti; D. K. Bradley; D. A. Callahan; E. L. Dewald; T. Doeppner; M. J. Edwards; O. A. Hurricane; N. Izumi; O. A. Jones; T. Ma; N. B. Meezan; S. R. Nagel; J. R. Rygg; K. Segraves; Michael Stadermann; R. J. Strauser; R. P. J. Town

Areal density non-uniformities seeded by time-dependent drive variations and target imperfections in Inertial Confinement Fusion (ICF) targets can grow in time as the capsule implodes, with growth rates that are amplified by instabilities. Here, we report on the first measurements of the perturbations on the density and areal density profiles induced by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. The measurements are based on the reconstruction of the ablator density profiles from 2D radiographs obtained using pinhole imaging coupled to area backlighting, as close as 150 ps to peak compression. Our study shows a clear correlation between the modulations imposed on the areal density and measured neutron yield, and a 3× reduction in the areal density perturbations comparing a high-adiabat vs. low-adiabat pulse shape.


Physics of Plasmas | 2014

Hydrodynamic instability growth and mix experiments at the National Ignition Facilitya)

V. A. Smalyuk; M. A. Barrios; J. A. Caggiano; D. T. Casey; C. Cerjan; D. S. Clark; M. J. Edwards; J. A. Frenje; M. Gatu-Johnson; Vladimir Yu. Glebov; G. P. Grim; S. W. Haan; B. A. Hammel; Alex V. Hamza; D. Hoover; W. W. Hsing; O. A. Hurricane; J. D. Kilkenny; J. L. Kline; J. P. Knauer; J. J. Kroll; O. L. Landen; J. D. Lindl; T. Ma; J. McNaney; M. Mintz; A. S. Moore; A. Nikroo; T. Parham; J. L. Peterson

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ig...


Physics of Plasmas | 2009

A high energy density shock driven Kelvin-Helmholtz shear layer experiment

O. A. Hurricane; J. F. Hansen; H. F. Robey; B. A. Remington; Matthew J. Bono; E. C. Harding; R. P. Drake; C. C. Kuranz

Radiographic data from a novel and highly successful high energy density Kelvin–Helmholtz (KH) instability experiment is presented along with synapses of the theory and simulation behind the target design. Data on instability growth are compared to predictions from simulation and theory. The key role played by baroclinic vorticity production in the functioning of the target and the key design parameters are also discussed. The data show the complete evolution of large distinct KH eddies, from formation to turbulent break-up. Unexpectedly, low density bubbles comparable to the vortex size are observed forming in the free-stream region above each vortex at late time. These bubbles have the appearance of localized shocks, possibly supporting a theoretical fluid dynamics conjecture about the existence of supersonic bubbles over the vortical structure [transonic convective Mach numbers, D. Papamoschou and A. Roshko, J. Fluid Mech. 197, 453 (1988)] that support localized shocks (shocklets) not extending into th...


Physics of Plasmas | 2017

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity

L. Divol; A. Pak; L. Berzak Hopkins; S. Le Pape; N. B. Meezan; E. L. Dewald; D. Ho; S. F. Khan; A. J. Mackinnon; J. S. Ross; D. P. Turnbull; C. R. Weber; Peter M. Celliers; M. Millot; L. R. Benedetti; J. E. Field; N. Izumi; G. A. Kyrala; T. Ma; S. R. Nagel; J. R. Rygg; D. H. Edgell; A. G. MacPhee; C. Goyon; M. Hohenberger; B. J. MacGowan; P. Michel; D. J. Strozzi; W. S. Cassata; D. T. Casey

We report on the most recent and successful effort at controlling the trajectory and symmetry of a high density carbon implosion at the National Ignition Facility. We use a low gasfill (0.3 mg/cc He) bare depleted uranium hohlraum with around 1 MJ of laser energy to drive a 3-shock-ignition relevant implosion. We assess drive performance and we demonstrate symmetry control at convergence 1, 3–5, 12, and 27 to better than ±5 μm using a succession of experimental platforms. The symmetry control was maintained at a peak fuel velocity of 380 km/s. Overall, implosion symmetry measurements are consistent with the pole-equator symmetry of the X-ray drive on the capsule being better than 5% in the foot of the drive (when shocks are launched) and better than 1% during peak drive (main acceleration phase). This level of residual asymmetry should have little impact on implosion performance.


Physics of Plasmas | 2015

Higher velocity, high-foot implosions on the National Ignition Facility lasera)

D. A. Callahan; O. A. Hurricane; D. E. Hinkel; T. Döppner; T. Ma; H.-S. Park; M. A. Barrios Garcia; L. Berzak Hopkins; D. T. Casey; C. Cerjan; E. L. Dewald; T. R. Dittrich; M. J. Edwards; S. W. Haan; Alex V. Hamza; J. L. Kline; J. P. Knauer; A. L. Kritcher; O. L. Landen; S. LePape; A. G. MacPhee; J. L. Milovich; A. Nikroo; A. Pak; P. K. Patel; J. R. Rygg; J. E. Ralph; J. D. Salmonson; B. K. Spears; P. T. Springer

By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity ( v), we find that for shots with primary yield >1 × 1015 neutrons, the total yield ∼ v9.4. This incre...

Collaboration


Dive into the O. A. Hurricane's collaboration.

Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. T. Casey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Ma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Berzak Hopkins

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. F. Robey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. W. Haan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. K. Patel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H.-S. Park

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge