O D Miranda
Instituto Tecnológico de Aeronáutica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O D Miranda.
Classical and Quantum Gravity | 2008
O. D. Aguiar; L A Andrade; Joaquim J. Barroso; Pedro J. Castro; C A Costa; S T de Souza; A. de Waard; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; Xavier Gratens; T M A Maffei; N S Magalhaes; R M Marinho; N. F. Oliveira; G L Pimentel; M Remy; Michael E. Tobar; E Abdalla; M. E. S. Alves; Dennis Bessada; Fabio da Silva Bortoli; C. S. S. Brandao; K M F Costa; H A B de Araújo; J C N de Araujo; E. M. de Gouveia Dal Pino; W. de Paula; E C de Rey Neto
Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of Sao Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology.
Classical and Quantum Gravity | 2004
O. D. Aguiar; L A Andrade; Joaquim J. Barroso; L. Camargo Filho; L A Carneiro; Carlos Castro; Pedro J. Castro; C A Costa; K M F Costa; J C N de Araujo; A U de Lucena; W. de Paula; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; Lucrécia Camilo de Lima; N S Magalhães; R M Marinho; E S Matos; J L Melo; O D Miranda; N. F. Oliveira; B W Paleo; M Remy; Kilder L. Ribeiro; C Stellati; Walter F. Velloso
We are building the Schenberg gravitational wave detector at the Physics Institute of the University of Sao Paulo as programmed by the Brazilian Graviton Project. The antenna and its vibration isolation system are already built, and we have made a first cryogenic run for an overall test, in which we measured the antenna mechanical Q (figure of merit). We also have built a 10.21 GHz oscillator with phase noise performance better than -120 dBc at 3.2 kHz to pump an initial CuA16% two-mode transducer. We plan to prepare this spherical antenna for a first operational run at 4.2 K with a single transducer and an initial target sensitivity of h ∼ 2 x 10 -21 Hz -1/2 in a 50 Hz bandwidth around 3.2 kHz soon. Here we present details of this plan and some recent results of the development of this project.
Classical and Quantum Gravity | 2004
Wayne de Paula; O D Miranda; R M Marinho
Using the Newman–Penrose formalism, we obtain explicit expressions for the polarization modes of weak, plane gravitational waves with a massive graviton. Our analysis is restricted to a specific bimetric theory whose term of mass for the graviton appears as an effective extra contribution to the stress–energy tensor. For this theory we find that the extra states of polarization have amplitudes several orders of magnitude smaller than purely general relativity (GR) polarizations, h+ and h×, in the VIRGO–LIGO frequency band. This result appears using the best limit to the graviton mass inferred from solar system observations and if we consider that all the components of the metric perturbation have the same amplitude h. However, if we consider low frequency gravitational waves (e.g., fGW ~ 10−7 Hz), the extra polarization states produce similar Newman–Penrose amplitudes to purely GR polarization states. This particular characteristic of the bimetric theory studied here could be used, for example, to directly impose limits on the mass of the graviton from future experiments that study the cosmic microwave background (CMB).
Classical and Quantum Gravity | 2006
O. D. Aguiar; L A Andrade; Joaquim J. Barroso; Fabio da Silva Bortoli; L A Carneiro; Pedro J. Castro; C A Costa; K M F Costa; J C N de Araujo; A U de Lucena; W. de Paula; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; N S Magalhaes; R M Marinho; J L Melo; O D Miranda; N. F. Oliveira; Kilder L. Ribeiro; C Stellati; Walter F. Velloso; J. Weber
The Mario Schenberg gravitational wave detector has been constructed at its site in the Physics Institute of the University of Sao Paulo as programmed by the Brazilian Graviton Project, under the full support of FAPESP (the Sao Paulo State Foundation for Research Support). We are preparing it for a first commissioning run of the spherical antenna at 4.2 K with three parametric transducers and an initial target sensitivity of h ~ 2 × 10−21 Hz−1/2 in a 60 Hz bandwidth around 3.2 kHz. Here we present the status of this project.
Classical and Quantum Gravity | 2005
José C. N. de Araujo; O D Miranda; O. D. Aguiar
The Brazilian spherical antenna (Schenberg) is planned to detect high frequency gravitational waves (GWs) ranging from 3.0 kHz to 3.4 kHz. There is a host of astrophysical sources capable of being detected by the Brazilian antenna, namely: core collapse in supernova events; (proto)neutron stars undergoing hydrodynamical instability; f-mode unstable neutron stars, caused by quakes and oscillations; excitation of the first quadrupole normal mode of 4–9 solar mass black holes; coalescence of neutron stars and/or black holes; exotic sources such as bosonic or strange matter stars rotating at 1.6 kHz; and inspiralling of mini black-hole binaries. We here address our study in particular to neutron stars, which could well become f-mode unstable producing therefore GWs. We estimate, for this particular source of GWs, the event rates that in principle can be detected by Schenberg and by the Dutch Mini-Grail antenna.
Classical and Quantum Gravity | 2005
O. D. Aguiar; L A Andrade; Joaquim J. Barroso; Fabio da Silva Bortoli; L A Carneiro; Pedro J. Castro; C A Costa; K M F Costa; J C N de Araujo; A U de Lucena; W. de Paula; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; N S Magalhães; R M Marinho; E S Matos; J L Melo; O D Miranda; N. F. Oliveira; B W Paleo; M Remy; Kilder L. Ribeiro; C Stellati; Walter F. Velloso; J. Weber
The Schenberg gravitational wave detector is almost completed for operation at its site in the Physics Institute of the University of Sao Paulo, under the full support of FAPESP (the Sao Paulo State Foundation for Research Support). We have been working on the development of a transducer system, which will be installed after the arrival of all the microwave components and the completion of the transducer mechanical parts. The initial plan is to operate a CuAl6% two-mode parametric transducer in a first operational run at 4.2 K with nine transducers and an initial target sensitivity of h ~ 2 × 10−21 Hz−1/2 in a 50 Hz bandwidth around 3.2 kHz. Here we present details of this plan and some recent results of the development of this project.
Classical and Quantum Gravity | 2002
O. D. Aguiar; L A Andrade; L. Camargo Filho; C A Costa; J C N de Araujo; E C de Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; V.G.S. Furtado; N S Magalhães; R M Marinho; E S Matos; M. T. Meliani; J L Melo; O D Miranda; N. F. Oliveira; Kilder L. Ribeiro; Karla Beatriz M. Salles; C Stellati; Walter F. Velloso
The first phase of the Brazilian Graviton Project is the construction and operation of the gravitational wave detector Mario Schenberg at the Physics Institute of the University of S?o Paulo. This gravitational wave spherical antenna is planned to feature a sensitivity better than h = 10?21 Hz?1/2 at the 3.0?3.4 kHz bandwidth, and to work not only as a detector, but also as a testbed for the development of new technologies. Here we present the status of this detector.
General Relativity and Gravitation | 2008
M. E. S. Alves; O D Miranda; J. C. N. de Araujo
In this work we give special attention to the bimetric theory of gravitation with massive gravitons proposed by Visser in 1998. In his theory, a prior background metric is necessary to take in account the massive term. Although in the great part of the astrophysical studies the Minkowski metric is the best choice to the background metric, it is not possible to consider this metric in cosmology. In order to keep the Minkowski metric as background in this case, we suggest an interpretation of the energy–momentum conservation in Visser’s theory, which is in accordance with the equivalence principle and recovers naturally the special relativity in the absence of gravitational sources. Although we do not present a general proof of our hypothesis we show its validity in the simple case of a plane and dust-dominated universe, in which the “massive term” appears like an extra contribution for the energy density.
Brazilian Journal of Physics | 2002
O. D. Aguiar; L A Andrade; L. Camargo Filho; C A Costa; J C N de Araujo; E.C. del Rey Neto; S T de Souza; A C Fauth; Carlos Frajuca; G. Frossati; S R Furtado; V.G.S. Furtado; N S Magalhães; R M Marinho; E S Matos; M. T. Meliani; J L Melo; O D Miranda; N. F. Oliveira; Kilder L. Ribeiro; Karla Beatriz M. Salles; C Stellati; Walter F. Velloso
The first phase of the Brazilian Graviton Project is the construction and operation of the gravitational wave detector Mario Schenberg at the Physics Institute of the University of Sao Paulo. This gravitational wave spherical antenna is planned to feature a sensitivity better than h = 10-21 Hz-1/2 at the 3.0-3.4 kHz bandwidth, and to work not only as a detector, but also as a testbed for the development of new technologies. Here we present the status of this detector.
Classical and Quantum Gravity | 2004
O D Miranda; J C N de Araujo; O. D. Aguiar
In general, the history of star formation of the universe is obtained from hydrodynamical simulations in a Λ-CDM cosmology. On the other hand, a complete study of the formation of the first objects and the feedback effects on the ambient medium produced by them, is not still possible with the present numerical approaches. However, formation of stars at different redshifts can produce a stochastic background of gravitational waves in the VIRGO and LIGO frequency band and so the detection of this background could directly be used to obtain information about the star formation rate density of the Universe. Here, we use the Press–Schechter formalism to calculate the co-moving abundance of halos and the mass contained within the collapsed objects of a given mass range. Then, we study, in particular for a pair of advanced LIGO observatories, what limits could be imposed on the fraction of baryons converted into stars within halos that collapse at redshifts 5 ≤ z ≤ 30.