Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O. Szewczyk is active.

Publication


Featured researches published by O. Szewczyk.


The Astrophysical Journal | 2006

Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common

A. Gould; A. Udalski; Deokkeun An; D. P. Bennett; A.-Y. Zhou; Subo Dong; N. J. Rattenbury; B. S. Gaudi; P. C. M. Yock; I. A. Bond; G. W. Christie; K. Horne; Jay Anderson; K. Z. Stanek; D. L. DePoy; Cheongho Han; J. McCormick; B.-G. Park; Richard W. Pogge; Shawn Poindexter; I. Soszyński; M. K. Szymański; M. Kubiak; Grzegorz Pietrzyński; O. Szewczyk; Ł. Wyrzykowski; K. Ulaczyk; Bohdan Paczynski; D. M. Bramich; C. Snodgrass

We detect a Neptune mass ratio (q 8 ? 10-5) planetary companion to the lens star in the extremely high magnification (A ~ 800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M ~ 0.5 M?, implying a planet mass of ~13 M? and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass ratio planets with projected separations of 0.6-1.6 Einstein radii, corresponding to 1.6-4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f = 0.38 over just 0.4 decades of planet-star separation. In particular, f > 16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is ? ~ 7-10 mas yr-1, implying that if the lens is sufficiently bright, I 23.8, it will be detectable by the Hubble Space Telescope by 3 years after peak. This would permit a more precise estimate of the lens mass and distance and, so, the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, and astrometry.


The Astrophysical Journal | 2010

Quantifying Quasar Variability as Part of a General Approach to Classifying Continuously Varying Sources

S. Kozłowski; Christopher S. Kochanek; A. Udalski; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; R. Poleski

Robust fast methods to classify variable light curves in large sky surveys are becoming increasingly important. While it is relatively straightforward to identify common periodic stars and particular transient events (supernovae, novae, microlensing events), there is no equivalent for non-periodic continuously varying sources (quasars, aperiodic stellar variability). In this paper, we present a fast method for modeling and classifying such sources. We demonstrate the method using ~86, 000 variable sources from the OGLE-II survey of the LMC and ~2700 mid-IR-selected quasar candidates from the OGLE-III survey of the LMC and SMC. We discuss the location of common variability classes in the parameter space of the model. In particular, we show that quasars occupy a distinct region of variability space, providing a simple quantitative approach to the variability selection of quasars.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


The Astrophysical Journal | 2005

A jovian-mass planet in microlensing event OGLE-2005-BLG-071

A. Udalski; Michal Jaroszynski; Bohdan Paczynski; M. Kubiak; M. K. Szymański; I. Soszyński; Grzegorz Pietrzyński; K. Ulaczyk; O. Szewczyk; Ł. Wyrzykowski; G. W. Christie; D. L. DePoy; Subo Dong; Avishay Gal-Yam; B. S. Gaudi; A. Gould; Cheongho Han; Sebastien Lepine; J. McCormick; B.-G. Park; Richard W. Pogge; D. P. Bennett; I. A. Bond; Y. Muraki; P. J. Tristram; Philip Yock; J. P. Beaulieu; D. M. Bramich; S. Dieters; J. Greenhill

We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.


The Astrophysical Journal | 2009

MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET

Subo Dong; I. A. Bond; A. Gould; S. Kozłowski; N. Miyake; B. S. Gaudi; D. P. Bennett; F. Abe; A. C. Gilmore; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; M. Nagaya; K. Ohnishi; Teppei Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; Shuji Sato; L. Skuljan

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus, the deviation from a single-lens fit is broad and relatively weak (approximately few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of , in accord with the large significance () of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M ? (assuming that it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M ? and thus a planet mass of ~0.5-1.3 M Jup. The separation and equilibrium temperature are ~5.3-9.7 AU (~0.6-1.1 AU) and ~34 K (~103 K) for the wide (close) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.


The Astrophysical Journal | 2006

Planetary detection efficiency of the magnification 3000 microlensing event OGLE-2004-BLG-343

Subo Dong; D. L. DePoy; B. S. Gaudi; A. Gould; C. Han; B.-G. Park; Richard W. Pogge; A. Udalski; O. Szewczyk; M. Kubiak; M. K. Szymański; G. Pietrzyński; I. Soszyński; Ł. Wyrzykowski; K. Żebruń

OGLE-2004-BLG-343 was a microlensing event with peak magnification Amax = 3000 ± 1100, by far the highest magnification event ever analyzed and hence potentially extremely sensitive to planets orbiting the lens star. Due to human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A ~ 1200, still by far the highest ever observed. As the light curve does not show significant deviations due to a planet, we place upper limits on the presence of such planets by extending the method of Yoo et al. (2004b), which combines light-curve analysis with priors from a Galactic model of the source and lens populations, to take account of finite-source effects. This is the first event so analyzed for which finite-source effects are important, and hence we develop two new techniques for evaluating these effects. Somewhat surprisingly, we find that OGLE-2004-BLG-343 is no more sensitive to planets than two previously analyzed events with Amax ~ 100, despite the fact that it was observed at ~12 times higher magnification. However, we show that had the event been observed over its peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 of projected separation and even would have had some sensitivity to Earth-mass planets. This shows that some microlensing events being detected in current experiments are sensitive to very low mass planets. We also give suggestions on how extremely high magnification events can be more promptly monitored in the future.


The Astrophysical Journal | 2010

Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System

D. P. Bennett; Sun Hong Rhie; Sergei Nikolaev; B. S. Gaudi; A. Udalski; A. Gould; G. W. Christie; D. Maoz; Subo Dong; J. McCormick; M. K. Szymański; P. J. Tristram; Bruce A. Macintosh; K. H. Cook; M. Kubiak; G. Pietrzyński; I. Soszyński; O. Szewczyk; K. Ulaczyk; Ł. Wyrzykowski; D. L. DePoy; Cheongho Han; Shai Kaspi; C.-U. Lee; F. Mallia; T. Natusch; B.-G. Park; Richard W. Pogge; David Polishook; F. Abe

We present a new analysis of the Jupiter+Saturn analog system, OGLE-2006-BLG-109Lb,c, which was the first double planet system discovered with the gravitational microlensing method. This is the only multi-planet system discovered by any method with measured masses for the star and both planets. In addition to the signatures of two planets, this event also exhibits a microlensing parallax signature and finite source effects that provide a direct measure of the masses of the star and planets, and the expected brightness of the host star is confirmed by Keck AO imaging, yielding masses of , Mb = 231 ± 19 M ⊕, and Mc = 86 ± 7 M ⊕. The Saturn-analog planet in this system had a planetary light-curve deviation that lasted for 11 days, and as a result, the effects of the orbital motion are visible in the microlensing light curve. We find that four of the six orbital parameters are tightly constrained and that a fifth parameter, the orbital acceleration, is weakly constrained. No orbital information is available for the Jupiter-analog planet, but its presence helps to constrain the orbital motion of the Saturn-analog planet. Assuming co-planar orbits, we find an orbital eccentricity of and an orbital inclination of . The 95% confidence level lower limit on the inclination of i > 49° implies that this planetary system can be detected and studied via radial velocity measurements using a telescope of 30 m aperture.


The Astrophysical Journal | 2004

WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

A. Z. Bonanos; Krzysztof Zbigniew Stanek; A. Udalski; L. Wyrzykowski; K. Żebruń; M. Kubiak; M. K. Szymański; O. Szewczyk; G. Pietrzyński; I. Soszyński

We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a subproject of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7 ± 4.0 and 68.8 ± 3.8 M☉ for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P = 3.686 days and deriving an inclination angle of i = 745 ± 20. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0 ± 5.0 and 82.0 ± 5.0 M☉. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination.


The Astrophysical Journal | 2006

Microlensing optical depth toward the Galactic bulge using bright sources from OGLE-II

T. Sumi; P. R. Woźniak; A. Udalski; M. K. Szymański; M. Kubiak; G. Pietrzyński; I. Soszyński; K. Żebruń; O. Szewczyk; Ł. Wyrzykowski; Bohdan Paczynski

We present a measurement of the microlensing optical depth toward the Galactic bulge based on 4 years of the OGLE-II survey. We consider only bright sources in the extended red clump giant (RCG) region of the color-magnitude diagram, in 20 bulge fields covering ~5 deg2 between 0° < l < 3° and -4° < b < -2°. Using a sample of 32 events we find τ = 2.55 × 10-6 at (l, b) = (116, - 275). Taking into account the measured gradient along the Galactic latitude b, τ = [(4.48 ± 2.37) + (0.78 ± 0.84) × b] × 10-6, this value is consistent with previous measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and select events using a model light curve that allows for flux blending. Photometric quality delivered by difference image analysis (DIA) combined with the 13 median seeing of the OGLE-II images are sufficient to constrain and reject the majority of strong blends. We find that ~38% of the OGLE-II events that appear to have RCG sources are actually due to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result in similar τ estimates through partial cancellation of contributions from higher detection efficiency, underestimated timescales, and a larger number of selected events. The near cancellation of the optical depth bias and the fact that microlensing event selection based on models without blending discriminates against blends have been utilized by previous analyses based on RCG sources. The latter approach, however, leads to biased timescale distributions and event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.


Astronomy and Astrophysics | 2002

On Be star candidates and possible blue pre-main sequence objects in the Small Magellanic Cloud ?

R. E. Mennickent; G. Pietrzyński; W. Gieren; O. Szewczyk

Recently the OGLE experiment has provided accurate light curves and colours for about 2 millions stars in the Small Magellanic Cloud. We have examined this database for its content of Be stars, applying some selection criteria, and we have found a sample of 1000 candidates. Some of these stars show beautiful light curves with amazing variations never observed in any Galactic variable. We find outbursts in 13% of the sample (type-1 stars), high and low states in 15%, periodic variations in 7%, and the usual variations seen in Galactic Be stars in 65% of the cases. The Galactic counterparts of type-1 objects could be the outbursting Be stars found by Hubert & Floquet (1998) after the analysis of Hipparcos photometry. We discuss the possibility that type-1 stars could correspond to Be stars with accreting white dwarf companions or alternatively, blue pre-main sequence stars surrounded by thermally unstable accretion disks. We provide coordinates and basic photometric information for these stars and some examples of light curves.

Collaboration


Dive into the O. Szewczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge