Octerloney B. McDonald
Research Triangle Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Octerloney B. McDonald.
Cancer Research | 2004
Edgar R. Wood; Anne T. Truesdale; Octerloney B. McDonald; Derek Yuan; Anne M. Hassell; Scott Howard Dickerson; Byron Ellis; Christopher Pennisi; Earnest Horne; Karen Elizabeth Lackey; Krystal J. Alligood; David W. Rusnak; Tona M. Gilmer; Lisa M. Shewchuk
GW572016 (Lapatinib) is a tyrosine kinase inhibitor in clinical development for cancer that is a potent dual inhibitor of epidermal growth factor receptor (EGFR, ErbB-1) and ErbB-2. We determined the crystal structure of EGFR bound to GW572016. The compound is bound to an inactive-like conformation of EGFR that is very different from the active-like structure bound by the selective EGFR inhibitor OSI-774 (Tarceva) described previously. Surprisingly, we found that GW572016 has a very slow off-rate from the purified intracellular domains of EGFR and ErbB-2 compared with OSI-774 and another EGFR selective inhibitor, ZD-1839 (Iressa). Treatment of tumor cells with these inhibitors results in down-regulation of receptor tyrosine phosphorylation. We evaluated the duration of the drug effect after washing away free compound and found that the rate of recovery of receptor phosphorylation in the tumor cells reflected the inhibitor off-rate from the purified intracellular domain. The slow off-rate of GW572016 correlates with a prolonged down-regulation of receptor tyrosine phosphorylation in tumor cells. The differences in the off-rates of these drugs and the ability of GW572016 to inhibit ErbB-2 can be explained by the enzyme-inhibitor structures.
Biochemical Journal | 2009
Kelly Anderson; Zhihong Lai; Octerloney B. McDonald; J. Darren Stuart; Eldridge N. Nartey; Mary Ann Hardwicke; Ken Newlander; Dashyant Dhanak; Jerry L. Adams; Denis R. Patrick; Robert A. Copeland; Peter J. Tummino; Jingsong Yang
The Aurora kinases AurA, B and C are serine/threonine protein kinases that play essential roles in mitosis and cytokinesis. Among them, AurB is required for maintaining proper chromosome alignment, separation and segregation during mitosis, and regulating a number of critical processes involved in cytokinesis. AurB overexpression has been observed in a variety of cancer cell lines, and inhibition of AurB has been shown to induce tumour regression in mouse xenograft models. In the present study we report the enzymatic characterization of a potent and selective AurB/AurC inhibitor. GSK1070916 is a reversible and ATP-competitive inhibitor of the AurB-INCENP (inner centromere protein) enzyme. It selectively inhibits AurB-INCENP (K(i)*=0.38+/-0.29 nM) and AurC-INCENP (K(i)*=1.5+/-0.4 nM) over AurA-TPX2 (target protein for Xenopus kinesin-like protein 2) (K(i)=490+/-60 nM). Inhibition of AurB-INCENP and AurC-INCENP is time-dependent, with an enzyme-inhibitor dissociation half-life of >480 min and 270+/-28 min respectively. The extremely slow rate of dissociation from the AurB and AurC enzymes distinguishes GSK1070916 from two other Aurora inhibitors in the clinic, AZD1152 and VX-680 (also known as MK-0457).
Bioorganic & Medicinal Chemistry Letters | 2009
Tara Renae Rheault; Thomas R. Caferro; Scott Howard Dickerson; Kelly Horne Donaldson; Michael David Gaul; Aaron S. Goetz; Robert J. Mullin; Octerloney B. McDonald; Kimberly G. Petrov; David W. Rusnak; Lisa M. Shewchuk; Glenn M. Spehar; Anne T. Truesdale; Dana E. Vanderwall; Edgar R. Wood; David E. Uehling
Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC(50) values less than 1 microM against human tumor cells in vitro.
Journal of Medicinal Chemistry | 2010
Nicholas D. Adams; Jerry L. Adams; Joelle L. Burgess; Amita M. Chaudhari; Robert A. Copeland; Carla A. Donatelli; David H. Drewry; Kelly E. Fisher; Toshihiro Hamajima; Mary Ann Hardwicke; William F. Huffman; Kristin K. Koretke-Brown; Zhihong V. Lai; Octerloney B. McDonald; Hiroko Nakamura; Ken A. Newlander; Catherine A. Oleykowski; Cynthia A. Parrish; Denis R. Patrick; Ramona Plant; Martha A. Sarpong; Kosuke Sasaki; Stanley J. Schmidt; Domingos J. Silva; David Sutton; Jun Tang; Christine Thompson; Peter J. Tummino; Jamin C. Wang; Hong Xiang
The Aurora kinases play critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. Selective inhibitors may provide a new therapy for the treatment of tumors with Aurora kinase amplification. Herein we describe our lead optimization efforts within a 7-azaindole-based series culminating in the identification of GSK1070916 (17k). Key to the advancement of the series was the introduction of a 2-aryl group containing a basic amine onto the azaindole leading to significantly improved cellular activity. Compound 17k is a potent and selective ATP-competitive inhibitor of Aurora B and C with K(i)* values of 0.38 +/- 0.29 and 1.5 +/- 0.4 nM, respectively, and is >250-fold selective over Aurora A. Biochemical characterization revealed that compound 17k has an extremely slow dissociation half-life from Aurora B (>480 min), distinguishing it from clinical compounds 1 and 2. In vitro treatment of A549 human lung cancer cells with compound 17k results in a potent antiproliferative effect (EC(50) = 7 nM). Intraperitoneal administration of 17k in mice bearing human tumor xenografts leads to inhibition of histone H3 phosphorylation at serine 10 in human colon cancer (Colo205) and tumor regression in human leukemia (HL-60). Compound 17k is being progressed to human clinical trials.
Journal of Medicinal Chemistry | 2014
Anna L. Leivers; Matthew D. Tallant; J. Brad Shotwell; Scott Howard Dickerson; Martin Robert Leivers; Octerloney B. McDonald; Jeff Gobel; Katrina L. Creech; Susan L. Strum; Amanda Mathis; Sabrinia Rogers; Chris B. Moore; Janos Botyanszki
Hepatitis C virus (HCV) assembles many host cellular proteins into unique membranous replication structures as a prerequisite for viral replication, and PI4KIIIα is an essential component of these replication organelles. RNA interference of PI4KIIIα results in a breakdown of this replication complex and cessation of HCV replication in Huh-7 cells. PI4KIIIα is a lipid kinase that interacts with the HCV nonstructural 5A protein (NS5A) and enriches the HCV replication complex with its product, phosphoinositol 4-phosphate (PI4P). Elevated levels of PI4P at the endoplasmic reticulum have been linked to HCV infection in the liver of HCV infected patients. We investigated if small molecule inhibitors of PI4KIIIα could inhibit HCV replication in vitro. The synthesis and structure-activity relationships associated with the biological inhibition of PI4KIIIα and HCV replication are described. These efforts led directly to identification of quinazolinone 28 that displays high selectivity for PI4KIIIα and potently inhibits HCV replication in vitro.
Analytical Biochemistry | 1999
Octerloney B. McDonald; Wen Ji Chen; Byron Ellis; Christine Hoffman; Laurie K. Overton; Martin Rink; Albert A. Smith; Christopher J. Marshalland; Edgar R. Wood
Bioorganic & Medicinal Chemistry Letters | 2006
Alex G. Waterson; Kirk L. Stevens; Michael J. Reno; Yue-Mei Zhang; Eric E. Boros; Frederic Bouvier; Abdullah Rastagar; David E. Uehling; Scott Howard Dickerson; Bryan R. Reep; Octerloney B. McDonald; Edgar R. Wood; David W. Rusnak; Krystal J. Alligood; Sharon K. Rudolph
Bioorganic & Medicinal Chemistry Letters | 2006
Octerloney B. McDonald; Karen Lackey; Ronda G. Davis-Ward; Edgar R. Wood; Vicente Samano; Patrick Maloney; Felix DeAnda; Robert Neil Hunter
Bioorganic & Medicinal Chemistry Letters | 2018
Daniel J. Price; David H. Drewry; Lee T. Schaller; Brian Thompson; Paul R Reid; Patrick Maloney; Xi Liang; Periette Banker; Richard G. Buckholz; Paula K. Selley; Octerloney B. McDonald; Jeffery L. Smith; Todd W. Shearer; Richard F. Cox; Shawn P. Williams; Robert A. Reid; Stefano Tacconi; Federico Faggioni; Chiara Piubelli; Ilaria Sartori; Michela Tessari; Tony Y. Wang
Cancer Research | 2008
Jingsong Yang; Kelly Anderson; Mary Ann Hardwicke; Domingos Silva; Ken A. Newlander; Octerloney B. McDonald; Jerry Adams; Denis Patrick; Peter Tummino; Robert Copeland; Zhihong Lai