Odette B. James
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Odette B. James.
Geochimica et Cosmochimica Acta | 1998
Christine Floss; Odette B. James; James J. McGee; Ghislaine Crozaz
The rare earth elements (REE) and selected other trace elements were measured in plagioclase and pyroxene from nine samples of the lunar ferroan anorthosite (FAN) suite of rocks. Samples were selected from each of four FAN subgroups previously defined by James et al. (1989). Plagioclase compositions are homogeneous within each sample, but high- and low-Ca pyroxenes from lithic clasts typically have different REE abundances from their counterparts in the surrounding granulated matrices. Measured plagioclase/low-Ca pyroxene concentration ratios for the REE have steeper patterns than experimentally determined plagioclase/low-Ca pyroxene partition coefficients in most samples. Textural and trace element evidence suggest that, although subsolidus equilibration may be responsible for some of the discrepancy, plagioclase compositions in most samples have been largely unaffected by intermineral redistribution of the REE. The REE systematics of plagioclase from the four subgroups are broadly consistent with their derivation through crystallization from a single evolving magma. However, samples from some of the subgroups exhibit a decoupling of plagioclase and pyroxene compositions that probably reflects the complexities inherent in crystallization from a large-scale magmatic system. For example, two anorthosites with very magnesian mafic minerals have highly evolved trace element compositions; major element compositions in plagioclase also do not reflect the evolutionary sequence recorded by their REE compositions. Finally, a noritic anorthosite breccia with relatively ferroan mafic minerals contains several clasts with high and variable REE and other trace element abundances. Although plagioclase REE compositions are consistent with their derivation from a magma with a KREEPy trace element signature, very shallow REE patterns in the pyroxenes suggest the addition of a component enriched in the light REE.
Geological Society of America Bulletin | 1972
Odette B. James; Thomas L. Wright
On the basis of composition, it is possible to distinguish three major groups of Apollo 12 basaltic rocks: olivine-pigeonite basalts and gabbros, ilmenite-bearing basalts and gabbros, and feldspathic basalts. Two major groups of Apollo 11 basalts are also distinguishable: ophitic ilmenite basalts and intersertal ilmenite basalts. Compositional variations between samples within groups are generally dominated by MgO variations, whereas differences between groups are primarily inverse variations of TiO 2 and SiO 2 or Al 2 O 3 and FeO. Results of fractionation calculations indicate that the MgO variation trends are explained principally by low-pressure fractionation of early-crystallized olivine ± pigeonite ± chrome spinel. The Al 2 O 3 versus FeO trend in the basalts might possibly be explained by near-surface fractionation, but the TiO 2 versus SiO 2 trend is not explainable in this way. Investigations of the latter trend in terms of possible processes of high-pressure fractional melting or fractional crystallization indicate that the compositional variations cannot be the products of simple variations in depth or degree of fractionation. Our data are consistent with the view that the mafic magmas formed by partial melting in the lunar interior, and that near-surface fractionation, with the exception of removal or addition of olivine, has not been extensive.
Science | 1969
Odette B. James
Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfracruree, and augite contains twin lamellae. (ii) Moderate. Plagioclase is converted to glass, amd mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, defomation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows moscaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.
Science | 1969
Odette B. James
Jadeite (high-pressure sodium aluminum pyroxene) has been identified in a shock-phase assemblage of oligoclase. The shock assemblage consists of minute particles with high refractive indices that contain at least two phases: one (identified by x-ray) is a jadeite that is nearly pure NaAlSi2O6; the other has the chemical composition of oligoclase minus jadeite and appears to be largely amorphous.
Science | 1972
Odette B. James
Lunar anorthosite 15415 consists almost entirely of anorthite (homogeneous anorthite 96.6 molecule percent), with accessory diopsidic augite and traces of hypersthene, ilmenite, and a silica mineral. The rock has had a complex metamorphic history. The texture reflects at least two episodes of shearing (followed by intense and partial recrystallization, respectively), one episode of cataclastic deformation, and one or more episodes of shattering and fragmentation.
Science | 1970
E. C. T. Chao; Odette B. James; Jean A. Minkin; Judith A. Boreman; Everett D. Jackson; C. B. Raleigh
On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.
Geochimica et Cosmochimica Acta | 2002
Odette B. James; Christine Floss; James J. McGee
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. “Equilibrium” liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates. Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occurred significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and eNd will be in error.
Geochimica et Cosmochimica Acta | 2008
Igor S. Puchtel; Richard J. Walker; Odette B. James; David A. Kring
Earth and Planetary Science Letters | 2010
James M. D. Day; Richard J. Walker; Odette B. James; Igor S. Puchtel
Journal of Geophysical Research | 1983
Odette B. James; Marta J. K. Flohr