Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olav Andreas Aarstad is active.

Publication


Featured researches published by Olav Andreas Aarstad.


Biomacromolecules | 2012

Alginate sequencing : An analysis of block distribution in alginates using specific alginate degrading enzymes

Olav Andreas Aarstad; Anne Tøndervik; Håvard Sletta; Gudmund Skjåk-Bræk

Distribution and proportion of β-D-mannuronic and α-L-guluronic acid in alginates are important for understanding the chemical-physical properties of the polymer. The present state of art methods, which is based on NMR, provides a statistical description of alginates. In this work, a method was developed that also gives information of the distribution of block lengths of each of the three block types (M, G, and MG blocks). This was achieved using a combination of alginate lyases with different substrate specificities, including a novel lyase that specifically cleaves diguluronic acid linkages. Reaction products and isolated fragments of alginates degraded with these lyases were subsequently analyzed with (1)H NMR, HPAEC-PAD, and SEC-MALLS. The method was applied on three seaweed alginates with large differences in sequence parameters (F(G) = 0.32 to 0.67). All samples contained considerable amounts of extremely long G blocks (DP > 100). The finding of long M blocks (DP ≥ 90) suggests that also algal epimerases act by a multiple attack mechanism. Alternating sequences (MG-blocks) were found to be much shorter than the other block types. In connection with method development, an oligomer library comprising both saturated and unsaturated oligomers of various composition and DP 2-15 was made.


Journal of Bacteriology | 2009

Characterization of Three New Azotobacter vinelandii Alginate Lyases, One of Which Is Involved in Cyst Germination

Martin Gimmestad; Helga Ertesvåg; Tonje Marita Bjerkan Heggeset; Olav Andreas Aarstad; Britt Iren Glærum Svanem; Svein Valla

Alginates are polysaccharides composed of 1-4-linked beta-D-mannuronic acid and alpha-L-guluronic acid. The polymer can be degraded by alginate lyases, which cleave the polysaccharide using a beta-elimination reaction. Two such lyases have previously been identified in the soil bacterium Azotobacter vinelandii, as follows: the periplasmic AlgL and the secreted bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7. In this work, we describe the properties of three new lyases from this bacterium, AlyA1, AlyA2, and AlyA3, all of which belong to the PL7 family of polysaccharide lyases. One of the enzymes, AlyA3, also contains a C-terminal module similar to those of proteins secreted by a type I secretion system, and its activity is stimulated by Ca(2+). All three enzymes preferably cleave the bond between guluronic acid and mannuronic acid, resulting in a guluronic acid residue at the new reducing end, but AlyA3 also degrades the other three possible bonds in alginate. Strains containing interrupted versions of alyA1, alyA3, and algE7 were constructed, and their phenotypes were analyzed. Genetically pure alyA2 mutants were not obtained, suggesting that this gene product may be important for the bacterium during vegetative growth. After centrifugation, cultures from the algE7 mutants form a large pellet containing alginate, indicating that AlgE7 is involved in the release of alginate from the cells. Upon encountering adverse growth conditions, A. vinelandii will form a resting stage called cyst. Alginate is a necessary part of the protective cyst coat, and we show here that strains lacking alyA3 germinate poorly compared to wild-type cells.


Biomacromolecules | 2013

Gelling concept combining chitosan and alginate-proof of principle.

Thang Trung Khong; Olav Andreas Aarstad; Gudmund Skjåk-Bræk; Kurt I. Draget; Kjell M. Vårum

Biocompatible hydrogels are very interesting for applications in, e.g., tissue engineering and for immobilization of cells, such as calcium-alginate gels where the calcium ions form specific interactions with the guluronic acid units. We here report on a new gelling system of chitosan and alginate containing only mannuronic acid (poly-M), which are prepared using the following steps: (i) mixing at a pH well above 7 where the chitosan is mainly uncharged; (ii) controlled lowering of the pH by adding the slowly hydrolyzing d-glucono-δ-lactone (GDL); (iii) formation of a homogeneous chitosan-alginate gel upon leaving the mixture at room temperature. Some properties of the new gelling system are demonstrated herein by adding controlled amounts of GDL to (i) a mixture of a polymeric and neutral-soluble chitosan with poly-M oligomers (MO) and (ii) a mixture of poly-M and neutral-soluble chitosan oligomers. The neutral-solubility of the polymeric chitosan is achieved by selecting a polymeric chitosan with an intermediate degree of acetylation of 40%, while the neutral-solubility of the fully de-N-acetylated chitosan oligomers (CO) is obtained by selecting oligomers with a chain length below 10. A proof of concept of the new gelling system is demonstrated by measuring the gel strengths of the polymeric chitosan-MO, and a poly-M-CO. The results show that the gel strength increases with decreasing the pH from neutral to 5, and that the gel strength decreases with increasing ionic strength, indicative of an ionic gel formation. Poly-M formed relatively strong gels with CO while an alginate highly enriched in Guluronic acid formed gels of very limited mechanical strength, suggesting the importance of the match in charge distances in the poly-M and chitosan, both with diequatorially linked sugar units in the (4)C1 conformation.


Journal of Biological Chemistry | 2010

Isolation of Mutant Alginate Lyases with Cleavage Specificity for Di-guluronic Acid Linkages

Anne Tøndervik; Geir Klinkenberg; Olav Andreas Aarstad; Finn Drabløs; Helga Ertesvåg; Trond E. Ellingsen; Gudmund Skjåk-Bræk; Svein Valla; Håvard Sletta

Alginates are commercially valuable and complex polysaccharides composed of varying amounts and distribution patterns of 1–4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G). This structural variability strongly affects polymer physicochemical properties and thereby both commercial applications and biological functions. One promising approach to alginate fine structure elucidation involves the use of alginate lyases, which degrade the polysaccharide by cleaving the glycosidic linkages through a β-elimination reaction. For such studies one would ideally like to have different lyases, each of which cleaves only one of the four possible linkages in alginates: G-G, G-M, M-G, and M-M. So far no lyase specific for only G-G linkages has been described, and here we report the construction of such an enzyme by mutating the gene encoding Klebsiella pneumoniae lyase AlyA (a polysaccharide lyase family 7 lyase), which cleaves both G-G and G-M linkages. After error-prone PCR mutagenesis and high throughput screening of ∼7000 lyase mutants, enzyme variants with a strongly improved G-G specificity were identified. Furthermore, in the absence of Ca2+, one of these lyases (AlyA5) was found to display no detectable activity against G-M linkages. G-G linkages were cleaved with ∼10% of the optimal activity under the same conditions. The substitutions conferring altered specificity to the mutant enzymes are located in conserved regions in the polysaccharide lyase family 7 alginate lyases. Structure-function analyses by comparison with the known three-dimensional structure of Sphingomonas sp. A1 lyase A1-II′ suggests that the improved G-G specificity might be caused by increased affinity for nonproductive binding of the alternating G-M structure.


Biomacromolecules | 2013

Analysis of G‑Block Distributions and Their Impact on Gel Properties of in Vitro Epimerized Mannuronan

Olav Andreas Aarstad; Berit L. Strand; Lise Mari Klepp-Andersen; Gudmund Skjåk-Bræk

This paper reports a study of the distribution and function of homopolymeric guluronic acid blocks (G-blocks) in enzymatically modified alginate. High molecular weight mannuronan was incubated with one native (AlgE6) and two engineered G-block generating mannuronan C-5 epimerases (AlgE64 and EM1). These samples were found to contain G-blocks with a DP ranging from 20 to approximately 50, lacking the extremely long G-blocks (DP > 100) found in algal alginates. Calcium gels from epimerized materials were highly compressible and exhibited higher syneresis and rupture strength but lower Youngs modulus than gels made from algal polymers of similar G-content. Addition of extremely long G-blocks to the epimerized alginate resulted in decreased syneresis and rupture strength and an increased Youngs modulus that can be explained by reinforcement of the cross-linking zones at the cost of length and/or numbers of elastic segments. The presence and impact of these extremely long G-blocks found in natural alginates suggest that alginate gels can be viewed as a nanocomposite material.


Carbohydrate Polymers | 2014

Lyase-catalyzed degradation of alginate in the gelled state: Effect of gelling ions and lyase specificity

Kjetil Formo; Olav Andreas Aarstad; Gudmund Skjåk-Bræk; Berit L. Strand

Lyase-catalyzed degradation has been proposed as a more cell-friendly alternative to dissolution of alginate gels than using chelating agents. In this study, we investigated the effect of lyase specificity on degradation of alginate gels, including the effect of crosslinking ions with different affinity for the polymer. Degradation kinetics and products were analyzed. In particular, the degradation products were characterized using novel methods for alginate sequence determination by chromatography. Lyase-catalyzed gel disruption worked well for gels crosslinked with calcium, but was less effective when barium was included in the gel formulation. The importance of crosslinking of long G-blocks in maintaining the structural integrity of the gels was identified. The failure to degrade these long G-blocks, either due to protection of the G-blocks by strong ionic crosslinking or due to lack of lyase activity on G-G linkages, resulted in retained resistance to mechanical disruption of the gel.


Journal of Biological Chemistry | 2014

Structural and Functional Characterization of the R-modules in Alginate C-5 Epimerases AlgE4 and AlgE6 from Azotobacter vinelandii

Edith Buchinger; Daniel H. Knudsen; Manja A. Behrens; Jan Skov Pedersen; Olav Andreas Aarstad; Anne Tøndervik; Svein Valla; Gudmund Skjåk-Bræk; Reinhard Wimmer; Finn L. Aachmann

Background: Alginate epimerases consist of catalytic and noncatalytic domains of yet unknown function. Results: The noncatalytic domains of AlgE4 and AlgE6 possess different alginate binding behavior despite highly similar structures. Conclusion: Noncatalytic subunits of AlgE6 and AlgE4 influence the product specificity of the catalytic domain. Significance: This work opens a new route to designing alginate epimerases producing tailored alginates. The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.


Carbohydrate Research | 2009

Preparation of high purity monodisperse oligosaccharides derived from mannuronan by size-exclusion chromatography followed by semi-preparative high-performance anion-exchange chromatography with pulsed amperometric detection

Simon Ballance; Olav Andreas Aarstad; Finn L. Aachmann; Gudmund Skjåk-Bræk; Bjørn E. Christensen

Oligosaccharides of ([4)-beta-d-ManpA-(-->](n)) with a degree of polymerisation (DP) of 5, 10 and 15 were generated by partial acid hydrolysis of alginate mannuronan. These were subsequently purified by a combination of size-exclusion chromatography and semi-preparative high-performance anion-exchange chromatography with pulsed amperometric detection. The purity of the isolated oligosaccharides was greater than 96%. With automated operation of the chromatography system, milligram quantities can be generated over a period of a few days. Thus, our methodology now offers some significant advantages over earlier, including our own, protocols focused on uronic acid oligomers, where the final products are either not as pure or more starting material is needed to generate an equivalent yield of product. Removal of ammonium ions in collected fractions after size-exclusion chromatography and prior to freeze-drying was found to be essential to prevent the formation of imines and subsequent Maillard browning products.


Journal of Visualized Experiments | 2016

Extraction of structural extracellular polymeric substances from aerobic granular sludge

Simon Felz; Salah Al-Zuhairy; Olav Andreas Aarstad; Mark C.M. van Loosdrecht; Y.M. Lin

To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS.


Polymers | 2017

Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils

Olav Andreas Aarstad; Ellinor B. Heggset; Ina S. Pedersen; Sindre Hove Bjørnøy; Kristin Syverud; Berit L. Strand

Alginate and cellulose nanofibrils (CNF) are attractive materials for tissue engineering and regenerative medicine. CNF gels are generally weaker and more brittle than alginate gels, while alginate gels are elastic and have high rupture strength. Alginate properties depend on their guluronan and mannuronan content and their sequence pattern and molecular weight. Likewise, CNF exists in various qualities with properties depending on, e.g., morphology and charge density. In this study combinations of three types of alginate with different composition and two types of CNF with different charge and degree of fibrillation have been studied. Assessments of the composite gels revealed that attractive properties like high rupture strength, high compressibility, high gel rigidity at small deformations (Young’s modulus), and low syneresis was obtained compared to the pure gels. The effects varied with relative amounts of CNF and alginate, alginate type, and CNF quality. The largest effects were obtained by combining oxidized CNF with the alginates. Hence, by combining the two biopolymers in composite gels, it is possible to tune the rupture strength, Young’s modulus, syneresis, as well as stability in physiological saline solution, which are all important properties for the use as scaffolds in tissue engineering.

Collaboration


Dive into the Olav Andreas Aarstad's collaboration.

Top Co-Authors

Avatar

Gudmund Skjåk-Bræk

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Finn L. Aachmann

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Berit L. Strand

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew N. Round

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Kate A. Bowman

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Bjørn E. Christensen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bjørn Torger Stokke

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Helga Ertesvåg

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge