Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Tøndervik is active.

Publication


Featured researches published by Anne Tøndervik.


Applied and Environmental Microbiology | 2007

The Presence of N-Terminal Secretion Signal Sequences Leads to Strong Stimulation of the Total Expression Levels of Three Tested Medically Important Proteins during High-Cell-Density Cultivations of Escherichia coli

Håvard Sletta; Anne Tøndervik; Sigrid Hakvåg; T. E. Vee Aune; Aina Nedal; R. Aune; G. Evensen; Svein Valla; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT Genetic optimizations to achieve high-level production of three different proteins of medical importance for humans, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon alpha 2b (IFN-α2b), and single-chain antibody variable fragment (scFv-phOx), were investigated during high-cell-density cultivations of Escherichia coli. All three proteins were poorly expressed when put under control of the strong Pm/xylS promoter/regulator system, but high volumetric yields of GM-CSF and scFv-phOx (up to 1.7 and 2.3 g/liter, respectively) were achieved when the respective genes were fused to a translocation signal sequence. The choice of signal sequence, pelB, ompA, or synthetic signal sequence CSP, displayed a high and specific impact on the total expression levels for these two proteins. Data obtained by quantitative PCR confirmed relatively high in vivo transcript levels without using a fused signal sequence, suggesting that the signal sequences mainly stimulate translation. IFN-α2b expression remained poor even when fused to a signal sequence, and an alternative IFN-α2b coding sequence that was optimized for effective expression in Escherichia coli was therefore synthesized. The total expression level of this optimized gene remained low, while high-level production (0.6 g/liter) was achieved when the gene was fused to a signal sequence. Together, our results demonstrate a critical role of signal sequences for achieving industrial level expression of three human proteins in E. coli under the conditions tested, and this effect has to our knowledge not previously been systematically investigated.


Antimicrobial Agents and Chemotherapy | 2012

Overcoming Drug Resistance with Alginate Oligosaccharides Able To Potentiate the Action of Selected Antibiotics

Saira Khan; Anne Tøndervik; Håvard Sletta; Geir Klinkenberg; Charlotte Emanuel; Edvar Onsøyen; Rolf Myrvold; Robin A. Howe; Timothy R. Walsh; Katja E. Hill; David William Thomas

ABSTRACT The uncontrolled, often inappropriate use of antibiotics has resulted in the increasing prevalence of antibiotic-resistant pathogens, with major cost implications for both United States and European health care systems. We describe the utilization of a low-molecular-weight oligosaccharide nanomedicine (OligoG), based on the biopolymer alginate, which is able to perturb multidrug-resistant (MDR) bacteria by modulating biofilm formation and persistence and reducing resistance to antibiotic treatment, as evident using conventional and robotic MIC screening and microscopic analyses of biofilm structure. OligoG increased (up to 512-fold) the efficacy of conventional antibiotics against important MDR pathogens, including Pseudomonas, Acinetobacter, and Burkholderia spp., appearing to be effective with several classes of antibiotic (i.e., macrolides, β-lactams, and tetracyclines). Using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), increasing concentrations (2%, 6%, and 10%) of alginate oligomer were shown to have a direct effect on the quality of the biofilms produced and on the health of the cells within that biofilm. Biofilm growth was visibly weakened in the presence of 10% OligoG, as seen by decreased biomass and increased intercellular spaces, with the bacterial cells themselves becoming distorted and uneven due to apparently damaged cell membranes. This report demonstrates the feasibility of reducing the tolerance of wound biofilms to antibiotics with the use of specific alginate preparations.


Biomacromolecules | 2012

Alginate sequencing : An analysis of block distribution in alginates using specific alginate degrading enzymes

Olav Andreas Aarstad; Anne Tøndervik; Håvard Sletta; Gudmund Skjåk-Bræk

Distribution and proportion of β-D-mannuronic and α-L-guluronic acid in alginates are important for understanding the chemical-physical properties of the polymer. The present state of art methods, which is based on NMR, provides a statistical description of alginates. In this work, a method was developed that also gives information of the distribution of block lengths of each of the three block types (M, G, and MG blocks). This was achieved using a combination of alginate lyases with different substrate specificities, including a novel lyase that specifically cleaves diguluronic acid linkages. Reaction products and isolated fragments of alginates degraded with these lyases were subsequently analyzed with (1)H NMR, HPAEC-PAD, and SEC-MALLS. The method was applied on three seaweed alginates with large differences in sequence parameters (F(G) = 0.32 to 0.67). All samples contained considerable amounts of extremely long G blocks (DP > 100). The finding of long M blocks (DP ≥ 90) suggests that also algal epimerases act by a multiple attack mechanism. Alternating sequences (MG-blocks) were found to be much shorter than the other block types. In connection with method development, an oligomer library comprising both saturated and unsaturated oligomers of various composition and DP 2-15 was made.


Applied and Environmental Microbiology | 2009

Random Mutagenesis of the Pm Promoter as a Powerful Strategy for Improvement of Recombinant-Gene Expression

Ingrid Bakke; Laila Berg; Trond Erik Vee Aune; Trygve Brautaset; Håvard Sletta; Anne Tøndervik; Svein Valla

ABSTRACT The inducible Pm-xylS promoter system has proven useful for production of recombinant proteins in several gram-negative species and in high-cell-density cultivations of Escherichia coli. In this study we subjected a 24-bp region of Pm (including the −10 element) to random mutagenesis, leading to large mutant libraries in E. coli. Low-frequency-occurring Pm mutants displaying strongly increased promoter activity (up-mutants) could be efficiently identified by using β-lactamase as a reporter. The up-mutants typically carried multiple point mutations positioned throughout the mutagenized region, combined with deletions around the transcription start site. Mutants displaying up to about a 14-fold increase in β-lactamase expression (relative to wild-type Pm) were identified without loss of the inducible phenotype. The mutants also strongly stimulated the expression of two other reporter genes, luc (encoding firefly luciferase) and celB (encoding phosphoglucomutase), and were found to significantly improve (twofold) a previously optimized process for high-level recombinant production of the medically important granulocyte-macrophage colony-stimulating factor in E. coli under high-cell-density conditions. These results demonstrate the potential of using random mutagenesis of promoters to improve protein expression at industrial levels and indicate that targeted modifications of individual functional elements are not sufficient to obtain optimized promoter sequences.


Journal of Biological Chemistry | 2010

Isolation of Mutant Alginate Lyases with Cleavage Specificity for Di-guluronic Acid Linkages

Anne Tøndervik; Geir Klinkenberg; Olav Andreas Aarstad; Finn Drabløs; Helga Ertesvåg; Trond E. Ellingsen; Gudmund Skjåk-Bræk; Svein Valla; Håvard Sletta

Alginates are commercially valuable and complex polysaccharides composed of varying amounts and distribution patterns of 1–4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G). This structural variability strongly affects polymer physicochemical properties and thereby both commercial applications and biological functions. One promising approach to alginate fine structure elucidation involves the use of alginate lyases, which degrade the polysaccharide by cleaving the glycosidic linkages through a β-elimination reaction. For such studies one would ideally like to have different lyases, each of which cleaves only one of the four possible linkages in alginates: G-G, G-M, M-G, and M-M. So far no lyase specific for only G-G linkages has been described, and here we report the construction of such an enzyme by mutating the gene encoding Klebsiella pneumoniae lyase AlyA (a polysaccharide lyase family 7 lyase), which cleaves both G-G and G-M linkages. After error-prone PCR mutagenesis and high throughput screening of ∼7000 lyase mutants, enzyme variants with a strongly improved G-G specificity were identified. Furthermore, in the absence of Ca2+, one of these lyases (AlyA5) was found to display no detectable activity against G-M linkages. G-G linkages were cleaved with ∼10% of the optimal activity under the same conditions. The substitutions conferring altered specificity to the mutant enzymes are located in conserved regions in the polysaccharide lyase family 7 alginate lyases. Structure-function analyses by comparison with the known three-dimensional structure of Sphingomonas sp. A1 lyase A1-II′ suggests that the improved G-G specificity might be caused by increased affinity for nonproductive binding of the alternating G-M structure.


PLOS ONE | 2014

Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

Anne Tøndervik; Håvard Sletta; Geir Klinkenberg; Charlotte Emanuel; Lydia C. Powell; Manon F. Pritchard; Saira Khan; Kieron M. Craine; Edvar Onsøyen; Phil D. Rye; Chris J. Wright; David William Thomas; Katja E. Hill

The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity.


Journal of Biomedical Materials Research Part A | 2012

Alginates induce differentiation and expression of CXCR7 and CXCL12/SDF-1 in human keratinocytes—The role of calcium†

Jørgen Stenvik; Håvard Sletta; Øystein Grimstad; Brita Pukstad; Liv Ryan; Randi Aune; Wenche Strand; Anne Tøndervik; Sverre Helge Torp; Gudmund Skjåk-Bræk; Terje Espevik

Alginates from seaweed are used in chronic wound management, though the molecular and cellular effects of various alginate dressings are not well documented. We have developed ultrapure sodium-alginates from Pseudomonas fluorescens with different content and distribution of single guluronic acid (G) residues (0-45% G), and tested their biological activities on human primary keratinocytes (KCs). The alginates inhibited KC migration and induced expression of differentiation markers. The potency of the alginates correlated with the increasing percentage of single G residues. These findings were explained by different binding and release of ionic calcium (Ca++) from the alginates which subsequently triggered differentiation. Ca-free alginates had no effect on KC migration and differentiation, but the chemokine receptor CXCR7 was upregulated. Q-PCR revealed that also CXCL12/SDF-1, one of two known CXCR7-ligands, was induced by the alginates. Both CXCR7 and CXCL12-induction was dependent on the alginate G-content, and highest upregulation was induced by an alginate with 19% single G residues. In the epidermis, CXCR7 expression was restricted to the basal layer. This study defines two biological effects of ultrapure alginates on KCs, both being dependent on the alginate structure, and being either dependent or independent of Ca.


Journal of Biological Chemistry | 2014

Structural and Functional Characterization of the R-modules in Alginate C-5 Epimerases AlgE4 and AlgE6 from Azotobacter vinelandii

Edith Buchinger; Daniel H. Knudsen; Manja A. Behrens; Jan Skov Pedersen; Olav Andreas Aarstad; Anne Tøndervik; Svein Valla; Gudmund Skjåk-Bræk; Reinhard Wimmer; Finn L. Aachmann

Background: Alginate epimerases consist of catalytic and noncatalytic domains of yet unknown function. Results: The noncatalytic domains of AlgE4 and AlgE6 possess different alginate binding behavior despite highly similar structures. Conclusion: Noncatalytic subunits of AlgE6 and AlgE4 influence the product specificity of the catalytic domain. Significance: This work opens a new route to designing alginate epimerases producing tailored alginates. The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.


Biomacromolecules | 2013

Mannuronan C-5 epimerases suited for tailoring of specific alginate structures obtained by high-throughput screening of an epimerase mutant library.

Anne Tøndervik; Geir Klinkenberg; Finn L. Aachmann; Britt Iren Glærum Svanem; Helga Ertesvåg; Trond E. Ellingsen; Svein Valla; Gudmund Skjåk-Bræk; Håvard Sletta

The polysaccharide alginate is produced by brown algae and some bacteria and is composed of the two monomers, β-D-mannuronic acid (M) and α-L-guluronic acid (G). The distribution and composition of M/G are important for the chemical-physical properties of alginate and result from the activity of a family of mannuronan C-5 epimerases that converts M to G in the initially synthesized polyM. Traditionally, G-rich alginates are commercially most interesting due to gelling and viscosifying properties. From a library of mutant epimerases we have isolated enzymes that introduce a high level of G-blocks in polyM more efficiently than the wild-type enzymes from Azotobacter vinelandii when employed for in vitro epimerization reactions. This was achieved by developing a high-throughput screening method to discriminate between different alginate structures. Furthermore, genetic and biochemical analyses of the mutant enzymes have revealed structural features that are important for the differences in epimerization pattern found for the various epimerases.


Biochimica et Biophysica Acta | 2016

The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

Kristine Bistrup Eide; Linn Wilhelmsen Stockinger; Anna Lewin; Anne Tøndervik; Vincent G. H. Eijsink; Morten Sørlie

Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases.

Collaboration


Dive into the Anne Tøndervik's collaboration.

Top Co-Authors

Avatar

Gudmund Skjåk-Bræk

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Svein Valla

Norwegian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Olav Andreas Aarstad

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt Iren Glærum Svanem

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Finn L. Aachmann

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Trygve Brautaset

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge