Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oleg Mirochnitchenko is active.

Publication


Featured researches published by Oleg Mirochnitchenko.


Nucleic Acids Research | 2006

The expression profile of microRNAs in mouse embryos

Junichi Mineno; Sachiko Okamoto; Tatsuya Ando; Masahiro Sato; Hideto Chono; Hiroyuki Izu; Masanori Takayama; Kiyozo Asada; Oleg Mirochnitchenko; Masayori Inouye; Ikunoshin Kato

MicroRNAs (miRNAs), which are non-coding RNAs 18–25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that potentially identifies virtually all of the small RNAs in a sample. This approach allowed us to detect a total of 390 miRNAs, including 195 known miRNAs covering ∼80% of previously registered mouse miRNAs as well as 195 new miRNAs, which are so far unknown in mouse. Some of these miRNAs showed temporal expression profiles during prenatal development (E9.5, E10.5 and E11.5). Several miRNAs were positioned in polycistron clusters, including one particular large transcription unit consisting of 16 known and 23 new miRNAs. Our results indicate existence of a significant number of new miRNAs expressed at specific stages of mammalian embryonic development and which were not detected by earlier methods.


Molecular Brain Research | 1998

Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage.

Miriam Weisbrot-Lefkowitz; Kenneth R. Reuhl; Barbara A. Perry; Pak H. Chan; Masayori Inouye; Oleg Mirochnitchenko

As stroke is a major cause of disability and death in the western world, there is great interest in the basic mechanisms by which ischemia/reperfusion (I/R) causes damage. To this end, extensive research has been carried out which identifies reactive oxygen species (ROS) as key participants in brain damage resultant from I/R. Brain tissue is protected from ROS damage by antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GP). Overexpression of SOD in transgenic mice has already been demonstrated to confer protection against I/R damage in murine stroke models. We are using transgenic mice overexpressing the intracellular form of glutathione peroxidase (GP1) to determine the protective capacity of overexpression of this enzyme on stroke damage. 1 h of focal cerebral ischemia followed by 24 h of reperfusion was induced using the intraliminal suture method. Volume of infarction was reduced by 48% in GP1 mice compared to nontransgenic littermates. Brain edema was reduced by 33%. Behavioral deficits agreed with histologic data. Overexpression of glutathione peroxidase confers significant protection against I/R damage in our stroke model possibly through direct scavenging of ROS or through the influencing of signalling mechanisms which lead to tissue damage.


Journal of Biological Chemistry | 1999

Acetaminophen toxicity. Opposite effects of two forms of glutathione peroxidase.

Oleg Mirochnitchenko; Miriam Weisbrot-Lefkowitz; Kenneth Reuhl; Laishun Chen; Chung Yang; Masayori Inouye

Acetaminophen is one of the most extensively used analgesics/antipyretics worldwide, and overdose or idiopathic reaction causes major morbidity and mortality in its victims. Research into the mechanisms of toxicity and possible therapeutic intervention is therefore essential. In this study, the response of transgenic mice overexpressing human antioxidant enzymes to acute acetaminophen overdose was investigated. Animals overexpressing superoxide dismutase or plasma glutathione peroxidase demonstrated dramatic resistance to acetaminophen toxicity. Intravenous injection of glutathione peroxidase provided normal mice with nearly complete protection against a lethal dose of acetaminophen. Surprisingly, animals overexpressing intracellular glutathione peroxidase in the liver were significantly more sensitive to acetaminophen toxicity compared with nontransgenic littermates. This sensitivity appears to be due to the inability of these animals to efficiently recover glutathione depleted as a result of acetaminophen metabolism. Finally, the results suggest that glutathione peroxidase overexpression modulates the synthesis of several acetaminophen metabolites. Our results demonstrate the ability of glutathione peroxidase levels to influence the outcome of acetaminophen toxicity.


Environmental Health Perspectives | 2007

Prolonged Toxicokinetics and Toxicodynamics of Paraquat in Mouse Brain

Kavita Prasad; Bozena Winnik; Mona Thiruchelvam; Brian Buckley; Oleg Mirochnitchenko; Eric K. Richfield

Background Paraquat (PQ) has been implicated as a risk factor for the Parkinson disease phenotype (PDP) in humans and mice using epidemiologic or experimental approaches. The toxicokinetics (TK) and toxicodynamics (TD) of PQ in the brain are not well understood. Objectives The TK and TD of PQ in brain were measured after single or repeated doses. Methods Brain regions were analyzed for PQ levels, amount of lipid peroxidation, and functional activity of the 20S proteasome. Results Paraquat (10 mg/kg, ip) was found to be persistent in mouse ventral midbrain (VM) with an apparent half-life of approximately 28 days and was cumulative with a linear pattern between one and five doses. PQ was also absorbed orally with a concentration in brain rising linearly after single doses between 10 and 50 mg/kg. The level of tissue lipid peroxides (LPO) was differentially elevated in three regions, being highest in VM, lower in striatum (STR), and least in frontal cortex (FCtx), with the earliest significant elevation detected at 1 day. An elevated level of LPO was still present in VM after 28 days. Despite the cumulative tissue levels of PQ after one, three, and five doses, the level of LPO was not further increased. The activity of the 20S proteasome in the striatum was altered after a single dose and reduced after five doses. Conclusions These data have implications for PQ as a risk factor in humans and in rodent models of the PDP.


Journal of Immunology | 2002

Inflammatory Response and Glutathione Peroxidase in a Model of Stroke

Nobuya Ishibashi; Olga Prokopenko; Kenneth R. Reuhl; Oleg Mirochnitchenko

Stroke is one of the leading causes of death in major industrial countries. Many factors contribute to the cellular damage resulting from ischemia/reperfusion (I/R). Experimental data indicate an important role for oxidative stress and the inflammatory cascade during I/R. We are testing the hypothesis that the mechanism of protection against I/R damage observed in transgenic mice overexpressing human antioxidant enzymes (particularly intracellular glutathione peroxidase) involves the modulation of inflammatory response as well as reduced sensitivity of neurons to cytotoxic cytokines. Transgenic animals show significant reduction of expression of chemokines, IL-6, and cell death-inducing ligands as well as corresponding receptors in a focal cerebral I/R model. Reduction of DNA binding activity of consensus and potential AP-1 binding sites in mouse Fas ligand promoter sequence was observed in nuclear extracts from transgenic mice overexpressing intracellular glutathione peroxidase compared with normal animals following I/R. This effect was accompanied by modulation of the c-Jun N-terminal kinase/stress-activated protein kinase pathway. Cultured primary neurons from the transgenic mice demonstrated protection against hypoxia/reoxygenation injury as well as cytotoxicity after TNF-α and Fas ligand treatment. These results indicate that glutathione peroxidase-sensitive reactive oxygen species play an important role in regulation of cell death during cerebral I/R by modulating intrinsic neuronal sensitivity as well as brain inflammatory reactions.


American Journal of Physiology-cell Physiology | 1997

Intestinal ischemia and reperfusion injury in transgenic mice overexpressing copper-zinc superoxide dismutase.

Devendra R. Deshmukh; Oleg Mirochnitchenko; Vikram S. Ghole; Doreen M. Agnese; Pritesh C. Shah; Michael T. Reddell; Robert E. Brolin; Masayori Inouye

Superoxide dismutase (SOD) scavenges oxygen radicals that are implicated in the pathogenesis of intestinal ischemia-reperfusion injury. The effect of intestinal ischemia and reperfusion was investigated in transgenic mice overexpressing human Cu-Zn SOD. Ischemia was induced by occluding the superior mesenteric artery. Myeloperoxidase activity was determined as an index of neutrophil infiltration, and malondialdehyde levels were measured as an indicator of lipid peroxidation. Forty-five minutes of intestinal ischemia followed by 4 h of reperfusion caused an increase in intestinal levels of malondialdehyde in both nontransgenic and transgenic mice, but the concentration of malondialdehyde was significantly greater in nontransgenic mice. Intestinal ischemia-reperfusion also caused an increase in intestinal and pulmonary myeloperoxidase activity in nontransgenic and transgenic mice, but the transgenic mice had significantly lower levels of myeloperoxidase activity than nontransgenic mice. Transgenic mice had higher levels of intestinal SOD activity than nontransgenic mice. There were no significant differences in the catalase or glutathione peroxidase activities. In conclusion, our study demonstrates that the overexpression of SOD protects tissues from neutrophil infiltration and lipid peroxidation during intestinal ischemia-reperfusion.Superoxide dismutase (SOD) scavenges oxygen radicals that are implicated in the pathogenesis of intestinal ischemia-reperfusion injury. The effect of intestinal ischemia and reperfusion was investigated in transgenic mice overexpressing human Cu-Zn SOD. Ischemia was induced by occluding the superior mesenteric artery. Myeloperoxidase activity was determined as an index of neutrophil infiltration, and malondialdehyde levels were measured as an indicator of lipid peroxidation. Forty-five minutes of intestinal ischemia followed by 4 h of reperfusion caused an increase in intestinal levels of malondialdehyde in both nontransgenic and transgenic mice, but the concentration of malondialdehyde was significantly greater in nontransgenic mice. Intestinal ischemia-reperfusion also caused an increase in intestinal and pulmonary myeloperoxidase activity in nontransgenic and transgenic mice, but the transgenic mice had significantly lower levels of myeloperoxidase activity than nontransgenic mice. Transgenic mice had higher levels of intestinal SOD activity than nontransgenic mice. There were no significant differences in the catalase or glutathione peroxidase activities. In conclusion, our study demonstrates that the overexpression of SOD protects tissues from neutrophil infiltration and lipid peroxidation during intestinal ischemia-reperfusion.


Molecular Brain Research | 2002

Glutathione peroxidase inhibits cell death and glial activation following experimental stroke

Nobuya Ishibashi; Olga Prokopenko; Miriam Weisbrot-Lefkowitz; Kenneth R. Reuhl; Oleg Mirochnitchenko

Stroke is a leading cause of morbidity and mortality in major industrial countries. Many factors contribute to the cellular damage resulting from ischemia-reperfusion (I-R). Growing evidence indicates that reactive oxygen species (ROS) contribute significantly to this process, though their exact mechanism of action is mostly unknown. We have examined the mechanism of protection against I-R injury in transgenic mice that overexpress human glutathione peroxidase (hGPx1), using a focal cerebral I-R model. In this model, transgenic animals show significant reduction of necrotic as well as apoptotic cell death in vulnerable brain regions as demonstrated by TUNEL staining, DNA laddering and ELISA assays. We also observed decreased astrocytic and microglial activation in ischemic brains of animals overexpressing hGPx1. In wild-type mice, neuronal cell death was accompanied with compromise of vascular integrity, edema and neutrophil infiltration, whereas GPx1 mice revealed significant preservation of tissue structure and decreased infiltration of acute inflammatory cells. These results indicate that glutathione peroxidase-sensitive ROS play an important role in regulation of cell death during cerebral I-R as well as in brain inflammatory reactions.


Behavioural Brain Research | 2010

Animal model of autism using GSTM1 knockout mice and early post-natal sodium valproate treatment.

Carrie L. Yochum; Prianka Bhattacharya; Laryssa Patti; Oleg Mirochnitchenko; George Wagner

Autism is a heterogeneous, behaviorally defined developmental disorder with unknown etiology but thought to be the result of environmental insult acting upon the developing brain of a genetically susceptible individual. Approximately 30% of individuals with autism have normal development up to the age of about 30 months after which they experience behavioral regression and lose previously acquired motor, cognitive and social skills. Early post-natal toxicant administration to mice has been used to model autistic regression. To test the hypothesis that genetically altered mice might be more sensitive to toxicant exposure early in life, mice with a deletion of glutathione-S-transferaseM1 (GSTM1; a gene associated with increased risk of autism that codes for an enzyme involved in the management of toxicant-induced oxidative stress) and wild-type controls were exposed to valproic acid (VPA; a toxicant known to cause autism-like behavioral deficits that, in part, are mediated through oxidative stress) on post-natal day 14. VPA treatment caused significant increases in apoptosis in granule cells of the hippocampus and cerebellum. There was a genotype by treatment by sex interaction with wild-type females exhibiting significantly fewer apoptotic cells in these regions compared to all other groups. VPA treatment also resulted in long-lasting deficits in social behaviors and significant alterations in brain chemistry. VPA-treated GSTM1 knockout animals performed significantly fewer crawl-under behaviors compared to saline-treated knockout animals as well as wild-type controls receiving either treatment. Collectively, these studies indicate that VPA-treatment causes cerebellar and hippocampal apoptosis and that having the wild-type GSTM1 genotype may confer protection against VPA-induced neuronal death in female mice.


Biomaterials | 2010

A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial.

Yong Y. Peng; Ayumi Yoshizumi; Stephen J. Danon; Veronica Glattauer; Olga Prokopenko; Oleg Mirochnitchenko; Zhuoxin Yu; Masayori Inouye; Jerome A. Werkmeister; Barbara Brodsky; John A. M. Ramshaw

A range of bacteria have been shown to contain collagen-like sequences that form triple-helical structures. Some of these proteins have been shown to form triple-helical motifs that are stable around body temperature without the inclusion of hydroxyproline or other secondary modifications to the protein sequence. This makes these collagen-like proteins particularly suitable for recombinant production as only a single gene product and no additional enzyme needs to be expressed. In the present study, we have examined the cytotoxicity and immunogenicity of the collagen-like domain from Streptococcus pyogenes Scl2 protein. These data show that the purified, recombinant collagen-like protein is not cytotoxic to fibroblasts and does not elicit an immune response in SJL/J and Arc mice. The freeze dried protein can be stabilised by glutaraldehyde cross-linking giving a material that is stable at >37 degrees C and which supports cell attachment while not causing loss of viability. These data suggest that bacterial collagen-like proteins, which can be modified to include specific functional domains, could be a useful material for medical applications and as a scaffold for tissue engineering.


Developmental Neuroscience | 2005

Overexpression of glutathione peroxidase protects immature murine neurons from oxidative stress.

Claire W. McLean; Oleg Mirochnitchenko; Catherine P. Claus; Linda J. Noble-Haeusslein; Donna M. Ferriero

Neuronal enzyme systems involved in free radical detoxification are developmentally regulated such that intracellular glutathione peroxidase (GPx-1) activity is low in the newborn mouse brain. We hypothesized that neurons expressing a higher level of GPx-1 will be more resistant to hydrogen peroxide (H2O2) exposure. We show a dose-dependent protection against H2O2 in primary neuronal cultures from fetuses overexpressing human GPx-1 compared to wild types of the same genetic background. Exogenous antioxidants completely protected neurons, even at extremely high H2O2 concentrations and regardless of the genotype. Specific depletion of glutathione with buthionine sulfoximine increased cell death in transgenic cultures exposed to 200 µM H2O2, reducing protection afforded by increased GPx-1 activity. Increased GPx-1 expression in immature cortical neurons confers protection from oxidative stress, but availability of reducing equivalents determines susceptibility to oxidative cell death.

Collaboration


Dive into the Oleg Mirochnitchenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Prokopenko

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Weisbrot-Lefkowitz

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Nobuya Ishibashi

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuoxin Yu

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Ayumi Yoshizumi

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge