Olga Malinkiewicz
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Malinkiewicz.
Journal of the American Chemical Society | 2014
Luciana C. Schmidt; Antonio Pertegás; Soranyel Gonzalez-Carrero; Olga Malinkiewicz; Said Agouram; Guillermo Mínguez Espallargas; Henk J. Bolink; Raquel E. Galian; Julia Pérez-Prieto
To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit light within a narrow bandwidth of the visible spectrum and with a high quantum yield (ca. 20%); this could be advantageous in the design of optoelectronic devices.
Energy and Environmental Science | 2014
Cristina Roldán-Carmona; Olga Malinkiewicz; Alejandra Soriano; Guillermo Mínguez Espallargas; Ana Garcia; Patrick Reinecke; Thomas Kroyer; M. Ibrahim Dar; Mohammad Khaja Nazeeruddin; Henk J. Bolink
Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.
Energy and Environmental Science | 2014
Cristina Roldán-Carmona; Olga Malinkiewicz; Rafael Betancur; Giulia Longo; Cristina Momblona; Franklin Jaramillo; Luis Camacho; Henk J. Bolink
Semitransparent perovskite solar cells with a high power conversion efficiency (PCE) above 6% and 30% full device transparency have been achieved by implementing a thin perovskite layer and a simple foil compatible layout.
Scientific Reports | 2015
Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Henry J. Snaith; Vladimir Dyakonov; Henk J. Bolink
The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.
APL Materials | 2014
Cristina Momblona; Olga Malinkiewicz; Cristina Roldán-Carmona; Alejandra Soriano; Lidón Gil-Escrig; Enrico Bandiello; M. Scheepers; E. Edri; Henk J. Bolink
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness aro...
RSC Advances | 2013
Toon Ghoos; Olga Malinkiewicz; Bert Conings; Laurence Lutsen; Dirk Vanderzande; Henk J. Bolink; Wouter Maes
An ionic polymer based on a polythiophene backbone with appended imidazolium moieties was successfully implemented as a donor material in fully solution-processed efficient bi-layer solar cells prepared by the low impact meniscus coating technique. High fill factors and device reproducibility were obtained, even for ultrathin polymer layers, indicating excellent film formation properties and good compatibility with solution processing techniques. The possibility of smooth counter ion exchange, allowing solubility modification and efficiency tuning, enables exploration of new functionalities and other device architectures.
Spie Newsroom | 2014
Olga Malinkiewicz; Cristina Roldán-Carmona; Hendrik Jan Bolink; Mohammad Khaja Nazeeruddin
The majority of solar cells that are capable of converting sunlight into electricity are based on crystalline silicon, which is an expensive material. While polycrystalline thin-film cells are cheaper to produce, they are often based on rare and toxic elements such as cadmium telluride or cadmium sulfide. The development of highly efficient thin-film solar cells from abundantly available and cheaper materials would allow for the greater use of solar energy as a renewable resource. One such material is methylammonium lead iodide (CH3NH3PbI3) perovskite (the generic name for compounds that have the same crystal structure as the mineral perovskite) (see Figure 1). In the years since CH3NH3PbI3 perovskite first showed promise as an absorber for solar cells,1 the performance of perovskite-based solar cells has rapidly improved, even reaching efficiencies as high as 15%.2, 3 Most high-efficiency perovskite solar cells reported to date make use of a metal oxide such as aluminum oxide, titanium oxide, or zirconium oxide, all of which require a high-temperature sintering process. We have shown that a CH3NH3PbI3 perovskite layer sandwiched between two thin organic charge-transporting layers leads to a solar cell with high power conversion efficiency, or PCE (12%).4 We prepared the CH3NH3PbI3 perovskite thin film by coevaporating the two starting compounds, methyl ammonium iodide and lead iodide. The resulting films are pure and smooth with large crystal domains. To increase the photocurrent it was necessary to sandwich the perovskite film between an electron layer and a positive charge carrier-blocking layer. We used an arylamine-containing polymer (polyTPD) and [6,6]-phenyl Figure 1. Simulated crystal structure of CH3NH3PbI3 perovskite. Lead atoms are located at the center of the gray octahedrons, lavender spheres represent iodine atoms, and green spheres represent methylammonium cations. CH3NH3PbI3: Methylammonium lead iodide.
SPIE Organic Photonics + Electronics | 2013
Wouter Maes; Toon Ghoos; Jurgen Kesters; Jeroen Drijkoningen; Wouter Vanormelingen; Olga Malinkiewicz; Henk J. Bolink; Laurence Lutsen; Jean Manca; Dirk Vanderzande
In this Proceedings paper, we report on the synthesis of a family of polythiophene-based conjugated polyelectrolytes, both homopolymers and random copolymers varying in the building block ratio and counter ions, toward a better fundamental understanding of the structure-property relations of these ionic derivatives in organic photovoltaics. One of the ionic homopolymers was successfully implemented as a donor material in fully solution-processed efficient bi-layer solar cells (up to 1.6% PCE in combination with PC71BM) prepared by the low impact meniscus coating technique. On the other hand, these imidazolium-substituted polythiophenes were also applied as materials for electron transport layers (ETLs), boosting the I-V properties of PCDTBT:PC71BM solar cell devices up to average PCE values of 6.2% (~20% increase), which is notably higher than for previously reported ETL materials. Advanced scanning probe microscopy techniques were used to elucidate the efficiency enhancing mechanism.
Proceedings of SPIE | 2012
Olga Malinkiewicz; Martijn Lenes; Hicham Brine; Henk J. Bolink
Neat bi-layer solar cells of a fullerene acceptor and a cyanine dye donor were prepared using meniscus coating. Meniscus coating is very material efficient and leads to high quality pinhole-free films. The cells exhibit high open circuit voltages of 1 volt, only 0.8 eV below the band gap of the cyanine dye. This is one of the smallest differences reported for organic solar cells and illustrates an almost optimal donor-acceptor energy level alignment.
Nature Photonics | 2014
Olga Malinkiewicz; Aswani Yella; Yong Hui Lee; Guillermo Mínguez Espallargas; Michael Graetzel; Mohammad Khaja Nazeeruddin; Henk J. Bolink