Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver A. Kent is active.

Publication


Featured researches published by Oliver A. Kent.


Oncogene | 2006

A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes.

Oliver A. Kent; Joshua T. Mendell

The known classes of genes that function as tumor suppressors and oncogenes have recently been expanded to include the microRNA (miRNA) family of regulatory molecules. miRNAs negatively regulate the stability and translation of target messenger RNAs (mRNA) and have been implicated in diverse processes such as cellular differentiation, cell-cycle control and apoptosis. Examination of tumor-specific miRNA expression profiles has revealed widespread dysregulation of these molecules in diverse cancers. Although studies addressing their role in cancer pathogenesis are at an early stage, it is apparent that loss- or gain-of-function of specific miRNAs contributes to cellular transformation and tumorigenesis. The available evidence clearly demonstrates that these molecules are intertwined with cellular pathways regulated by classical oncogenes and tumor suppressors such as MYC, RAS and p53. Incorporation of miRNA regulation into current models of molecular cancer pathogenesis will be essential to achieve a complete understanding of this group of diseases.


Genes & Development | 2010

Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway

Oliver A. Kent; Raghu R. Chivukula; Michael Mullendore; Georg Feldmann; Kwang H. Lee; Shu Liu; Steven D. Leach; Anirban Maitra; Joshua T. Mendell

Although activating mutations in RAS oncogenes are known to result in aberrant signaling through multiple pathways, the role of microRNAs (miRNAs) in the Ras oncogenic program remains poorly characterized. Here we demonstrate that Ras activation leads to repression of the miR-143/145 cluster in cells of human, murine, and zebrafish origin. Loss of miR-143/145 expression is observed frequently in KRAS mutant pancreatic cancers, and restoration of these miRNAs abrogates tumorigenesis. miR-143/145 down-regulation requires the Ras-responsive element-binding protein (RREB1), which represses the miR-143/145 promoter. Additionally, KRAS and RREB1 are targets of miR-143/miR-145, revealing a feed-forward mechanism that potentiates Ras signaling.


Molecular Cancer Therapeutics | 2011

Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice

Dipankar Pramanik; Nathaniel R. Campbell; Collins Karikari; Raghu R. Chivukula; Oliver A. Kent; Joshua T. Mendell; Anirban Maitra

Mis-expression of microRNAs (miRNA) is widespread in human cancers, including in pancreatic cancer. Aberrations of miRNA include overexpression of oncogenic miRs (Onco-miRs) or downregulation of so-called tumor suppressor TSG-miRs. Restitution of TSG-miRs in cancer cells through systemic delivery is a promising avenue for pancreatic cancer therapy. We have synthesized a lipid-based nanoparticle for systemic delivery of miRNA expression vectors to cancer cells (nanovector). The plasmid DNA–complexed nanovector is approximately 100 nm in diameter and shows no apparent histopathologic or biochemical evidence of toxicity upon intravenous injection. Two miRNA candidates known to be downregulated in the majority of pancreatic cancers were selected for nanovector delivery: miR-34a, which is a component of the p53 transcriptional network and regulates cancer stem cell survival, and the miR-143/145 cluster, which together repress the expression of KRAS2 and its downstream effector Ras-responsive element binding protein-1 (RREB1). Systemic intravenous delivery with either miR-34a or miR-143/145 nanovectors inhibited the growth of MiaPaCa-2 subcutaneous xenografts (P < 0.01 for miR-34a; P < 0.05 for miR-143/145); the effects were even more pronounced in the orthotopic (intrapancreatic) setting (P < 0.0005 for either nanovector) when compared with vehicle or mock nanovector delivering an empty plasmid. Tumor growth inhibition was accompanied by increased apoptosis and decreased proliferation. The miRNA restitution was confirmed in treated xenografts by significant upregulation of the corresponding miRNA and significant decreases in specific miRNA targets (SIRT1, CD44 and aldehyde dehydrogenase for miR34a, and KRAS2 and RREB1 for miR-143/145). The nanovector is a platform with potential broad applicability in systemic miRNA delivery to cancer cells. Mol Cancer Ther; 10(8); 1470–80. ©2011 AACR.


Circulation Research | 2012

Nuclear miRNA Regulates the Mitochondrial Genome in the Heart

Samarjit Das; Marcella Ferlito; Oliver A. Kent; Karen Fox-Talbot; Richard Wang; Delong Liu; Nalini Raghavachari; Yanqin Yang; Sarah J. Wheelan; Elizabeth Murphy; Charles Steenbergen

Rationale: Mitochondria are semiautonomous cellular organelles with their own genome, which not only supply energy but also participate in cell death pathways. MicroRNAs (miRNAs) are usually 19 to 25 nt long, noncoding RNAs, involved in posttranscriptional gene regulation by binding to the 3′-untranslated regions of target mRNA, which impact on diverse cellular processes. Objective: To determine if nuclear miRNAs translocate into the mitochondria and regulate mitochondrial function with possible pathophysiological implications in cardiac myocytes. Methods and Results: We find that miR-181c is encoded in the nucleus, assembled in the cytoplasm, and finally translocated into the mitochondria of cardiac myocytes. Immunoprecipitation of Argonaute 2 from the mitochondrial fraction indicates binding of cytochrome c oxidase subunit 1 (mt-COX1) mRNA from the mitochondrial genome with miR-181c. Also, a luciferase reporter construct shows that mi-181c binds to the 3′UTR of mt-COX1. To study whether miR-181c regulates mt-COX1, we overexpressed precursor miR-181c (or a scrambled sequence) in primary cultures of neonatal rat ventricular myocytes. Overexpression of miR-181c did not change mt-COX1 mRNA but significantly decreased mt-COX1 protein, suggesting that miR-181c is primarily a translational regulator of mt-COX1. In addition to altering mt-COX1, overexpression of miR-181c results in increased mt-COX2 mRNA and protein content, with an increase in both mitochondrial respiration and reactive oxygen species generation in neonatal rat ventricular myocytes. Thus, our data show for the first time that miR-181c can enter and target the mitochondrial genome, ultimately causing electron transport chain complex IV remodeling and mitochondrial dysfunction. Conclusions: Nuclear miR-181c translocates into the mitochondria and regulates mitochondrial genome expression. This unique observation may open a new dimension to our understanding of mitochondrial dynamics and the role of miRNA in mitochondrial dysfunction.


Cancer Biology & Therapy | 2009

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Oliver A. Kent; Michael Mullendore; Eric A. Wentzel; Pedro López-Romero; Aik Choon Tan; Hector Alvarez; Kristen West; Michael F. Ochs; Manuel Hidalgo; Dan E. Arking; Anirban Maitra; Joshua T. Mendell

MicroRNAs (miRNAs) are 21-24 nucleotide RNA molecules that regulate the translation and stability of target messenger RNAs. Abnormal miRNA expression is a common feature of diverse cancers. Several previous studies have classified miRNA expression in pancreatic ductal adenocarcinoma (PDAC), although no uniform pattern of miRNA dysregulation has emerged. To clarify these previous findings as well as to set the stage for detailed functional analyses, we performed global miRNA expression profiling of 21 human PDAC cell lines, the most extensive panel studied to date. Overall, 39 miRNAs were found to be dysregulated and have at least two- fold or greater differential expression in PDAC cell lines compared to control non-transformed pancreatic ductal cell lines. Several of these miRNAs show comparable dysregulation in first- passage patient-derived xenografts. Initial functional analyses demonstrate that enforced expression of miRNAs derived from the miR-200 family and the miR-17-92 cluster, both of which are overexpressed in PDAC cell lines, enhances proliferation. In contrast, inhibition of the miR-200 family diminishes anchorage independent growth. Consistent with a known role for the miR-200 family in negatively regulating an epithelial-to-mesenchymal transition (EMT), the abundance of these miRNAs correlated positively with E-cadherin expression and negatively with the EMT-associated transcription factors and established miR-200 targets ZEB1/ZEB2. Finally, restituted expression of miR-34a, a miRNA whose expression is frequently lost in PDAC cell lines, abrogates growth, demonstrating that the anti-proliferative activity of this miRNA is operative in PDAC. These results, and the widespread availability of PDAC cell lines wherein the aforementioned data were generated, provide a valuable resource for the pancreatic cancer research community and will greatly facilitate functional studies essential for elucidating the consequences of miRNA dysregulation in pancreatic cancer.


Nucleic Acids Research | 2014

Lessons from miR-143/145: the importance of cell-type localization of miRNAs

Oliver A. Kent; Matthew N. McCall; Toby C. Cornish; Marc K. Halushka

miR-143 and miR-145 are co-expressed microRNAs (miRNAs) that have been extensively studied as potential tumor suppressors. These miRNAs are highly expressed in the colon and are consistently reported as being downregulated in colorectal and other cancers. Through regulation of multiple targets, they elicit potent effects on cancer cell growth and tumorigenesis. Importantly, a recent discovery demonstrates that miR-143 and miR-145 are not expressed in colonic epithelial cells; rather, these two miRNAs are highly expressed in mesenchymal cells such as fibroblasts and smooth muscle cells. The expression patterns of miR-143 and miR-145 and other miRNAs were initially determined from tissue level data without consideration that multiple different cell types, each with their own unique miRNA expression patterns, make up each tissue. Herein, we discuss the early reports on the identification of dysregulated miR-143 and miR-145 expression in colorectal cancer and how lack of consideration of cellular composition of normal tissue led to the misconception that these miRNAs are downregulated in cancer. We evaluate mechanistic data from miR-143/145 studies in context of their cell type-restricted expression pattern and the potential of these miRNAs to be considered tumor suppressors. Further, we examine other examples of miRNAs being investigated in inappropriate cell types modulating pathways in a non-biological fashion. Our review highlights the importance of determining the cellular expression pattern of each miRNA, so that downstream studies are conducted in the appropriate cell type.


Oncogene | 2013

RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets

Oliver A. Kent; Karen Fox-Talbot; M K Halushka

A lack of expression of miR-143 and miR-145 has been demonstrated to be a frequent feature of colorectal tumors. Activating KRAS mutations have been reported in 30–60% of colorectal cancers and an inverse correlation between Kras and miR-143/145 expression has been observed. Previously, we have demonstrated that oncogenic Kras leads to repression of the miR-143/145 cluster in pancreatic cancer and is dependent on the Ras responsive element (RRE) binding protein (RREB1), which negatively regulates miR-143/145 expression. In the present study, we have found that RREB1 is overexpressed in colorectal adenocarcinoma tumors and cell lines, and the expression of the miR-143/145 primary transcript is inversely related to RREB1 expression. In colorectal cancer cell lines, the miR-143/145 cluster is repressed by RREB1 downstream of constitutively active KRAS. RREB1 is activated by the MAPK pathway and negatively represses the miR-143/145 promoter through interaction with two RREs. In addition, overexpression of miR-143 or miR-145 in HCT116 cells abrogates signaling through the MAPK, PI3K and JNK pathways by downregulation of both KRAS and RREB1 in addition to downregulation of a cohort of genes in the MAPK signaling cascade. These results establish a complex network of regulation through which the miR-143/145 cluster is able to modulate KRAS signaling in colorectal cancer.


BMC Medical Genomics | 2011

MicroRNA profiling of diverse endothelial cell types

Matthew N. McCall; Oliver A. Kent; Jianshi Yu; Karen Fox-Talbot; Ari Zaiman; Marc K. Halushka

BackgroundMicroRNAs are ~22-nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. The diversity of miRNAs in endothelial cells (ECs) and the relationship of this diversity to epithelial and hematologic cells is unknown. We investigated the baseline miRNA signature of human ECs cultured from the aorta (HAEC), coronary artery (HCEC), umbilical vein (HUVEC), pulmonary artery (HPAEC), pulmonary microvasculature (HPMVEC), dermal microvasculature (HDMVEC), and brain microvasculature (HBMVEC) to understand the diversity of miRNA expression in ECs.ResultsWe identified 166 expressed miRNAs, of which 3 miRNAs (miR-99b, miR-20b and let-7b) differed significantly between EC types and predicted EC clustering. We confirmed the significance of these miRNAs by RT-PCR analysis and in a second data set by Sylamer analysis. We found wide diversity of miRNAs between endothelial, epithelial and hematologic cells with 99 miRNAs shared across cell types and 31 miRNAs unique to ECs. We show polycistronic miRNA chromosomal clusters have common expression levels within a given cell type.ConclusionsEC miRNA expression levels are generally consistent across EC types. Three microRNAs were variable within the dataset indicating potential regulatory changes that could impact on EC phenotypic differences. MiRNA expression in endothelial, epithelial and hematologic cells differentiate these cell types. This data establishes a valuable resource characterizing the diverse miRNA signature of ECs.


Molecular BioSystems | 2010

Identifying targets of miR-143 using a SILAC-based proteomic approach.

Yi Yang; Raghothama Chaerkady; Kumaran Kandasamy; Tai Chung Huang; Lakshmi Dhevi N. Selvan; Sutopa B. Dwivedi; Oliver A. Kent; Joshua T. Mendell; Akhilesh Pandey

Although the targets of most miRNAs have not been experimentally identified, microRNAs (miRNAs) have begun to be extensively characterized in physiological, developmental and disease-related contexts in recent years. Thus far, mainly computational approaches have been employed to predict potential targets for the large majority of miRNAs. Although miRNAs exert a major influence on the efficiency of translation of their targets in animals, most studies describing experimental identification of miRNA target genes are based on detection of altered mRNA levels. miR-143 is a miRNA involved in tumorigenesis in multiple types of cancer, smooth muscle cell fate and adipocyte differentiation. Only a few miR-143 targets are experimentally verified, so we employed a SILAC-based quantitative proteomic strategy to systematically identify potential targets of miR-143. In total, we identified >1200 proteins from MiaPaCa2 pancreatic cancer cells, of which 93 proteins were downregulated >2-fold in miR-143 mimic transfected cells as compared to controls. Validation of 34 of these candidate targets in luciferase assays showed that 10 of them were likely direct targets of miR-143. Importantly, we also carried out gene expression profiling of the same cells and observed that the majority of the candidate targets identified by proteomics did not show a concomitant decrease in mRNA levels confirming that miRNAs affect the expression of most targets through translational inhibition. Our study clearly demonstrates that quantitative proteomic approaches are important and necessary for identifying miRNA targets.


Cell Cycle | 2008

Functional integration of microRNAs into oncogenic and tumor suppressor pathways

Craig Lotterman; Oliver A. Kent; Joshua T. Mendell

A large body of evidence has documented abnormal microRNA (miRNA) expression patterns in diverse human malignancies. Given that miRNA expression is tightly regulated during development and cellular differentiation, aberrant miRNA expression in cancer cells is likely to be in part a consequence of the loss of normal cellular identity that accompanies malignant transformation. Nevertheless, it is now clear that miRNAs function as critical effectors of several canonical oncogenic and tumor suppressor pathways, including those controlled by Myc and p53. Gain- and loss-of-function of these factors in cancer cells contributes to miRNA dysregulation, directly influencing neoplastic phenotypes including cellular proliferation and apoptosis.

Collaboration


Dive into the Oliver A. Kent's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua T. Mendell

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Kohr

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge