Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivia Barreau is active.

Publication


Featured researches published by Olivia Barreau.


Nature Genetics | 2014

Integrated genomic characterization of adrenocortical carcinoma

Guillaume Assié; Eric Letouzé; Martin Fassnacht; Anne Jouinot; Windy Luscap; Olivia Barreau; Hanin Omeiri; S. Rodriguez; Karine Perlemoine; F. René-Corail; Nabila Elarouci; Silviu Sbiera; Matthias Kroiss; Bruno Allolio; Jens Waldmann; Marcus Quinkler; Massimo Mannelli; Franco Mantero; Thomas G. Papathomas; Ronald R. de Krijger; Antoine Tabarin; V. Kerlan; Eric Baudin; Frédérique Tissier; Bertrand Dousset; Lionel Groussin; Laurence Amar; Eric Clauser; Xavier Bertagna; Bruno Ragazzon

Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin ligase, was the most frequently altered gene (21%) and is a potential new tumor suppressor gene related to the β-catenin pathway. Our integrated genomic analyses further identified two distinct molecular subgroups with opposite outcome. The C1A group of ACCs with poor outcome displayed numerous mutations and DNA methylation alterations, whereas the C1B group of ACCs with good prognosis displayed specific deregulation of two microRNA clusters. Thus, aggressive and indolent ACCs correspond to two distinct molecular entities driven by different oncogenic alterations.


The New England Journal of Medicine | 2014

Constitutive Activation of PKA Catalytic Subunit in Adrenal Cushing's Syndrome

Felix Beuschlein; Martin Fassnacht; Guillaume Assié; Davide Calebiro; Constantine A. Stratakis; Andrea Osswald; Cristina L. Ronchi; Thomas Wieland; Silviu Sbiera; Fabio R. Faucz; Katrin Schaak; Anett Schmittfull; Thomas Schwarzmayr; Olivia Barreau; Delphine Vezzosi; Marthe Rizk-Rabin; Ulrike Zabel; Eva Szarek; Paraskevi Salpea; Antonella Forlino; Annalisa Vetro; Orsetta Zuffardi; Caroline Kisker; Susanne Diener; Thomas Meitinger; Martin J. Lohse; Martin Reincke; Jérôme Bertherat; Tim M. Strom; Bruno Allolio

BACKGROUND Corticotropin-independent Cushings syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushings syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


The New England Journal of Medicine | 2013

ARMC5 Mutations in Macronodular Adrenal Hyperplasia with Cushing's Syndrome

Guillaume Assié; Rossella Libé; Stéphanie Espiard; Marthe Rizk-Rabin; Anne Guimier; Windy Luscap; Olivia Barreau; Lucile Lefèvre; Mathilde Sibony; Laurence Guignat; S. Rodriguez; Karine Perlemoine; F. René-Corail; Franck Letourneur; Bilal Trabulsi; Alix Poussier; Nathalie Chabbert-Buffet; Françoise Borson-Chazot; Lionel Groussin; Xavier Bertagna; Constantine A. Stratakis; Bruno Ragazzon; Jérôme Bertherat; Abstr Act

BACKGROUND Corticotropin-independent macronodular adrenal hyperplasia may be an incidental finding or it may be identified during evaluation for Cushings syndrome. Reports of familial cases and the involvement of both adrenal glands suggest a genetic origin of this condition. METHODS We genotyped blood and tumor DNA obtained from 33 patients with corticotropin-independent macronodular adrenal hyperplasia (12 men and 21 women who were 30 to 73 years of age), using single-nucleotide polymorphism arrays, microsatellite markers, and whole-genome and Sanger sequencing. The effects of armadillo repeat containing 5 (ARMC5) inactivation and overexpression were tested in cell-culture models. RESULTS The most frequent somatic chromosome alteration was loss of heterozygosity at 16p (in 8 of 33 patients for whom data were available [24%]). The most frequent mutation identified by means of whole-genome sequencing was in ARMC5, located at 16p11.2. ARMC5 mutations were detected in tumors obtained from 18 of 33 patients (55%). In all cases, both alleles of ARMC5 carried mutations: one germline and the other somatic. In 4 patients with a germline ARMC5 mutation, different nodules from the affected adrenals harbored different secondary ARMC5 alterations. Transcriptome-based classification of corticotropin-independent macronodular adrenal hyperplasia indicated that ARMC5 mutations influenced gene expression, since all cases with mutations clustered together. ARMC5 inactivation decreased steroidogenesis in vitro, and its overexpression altered cell survival. CONCLUSIONS Some cases of corticotropin-independent macronodular adrenal hyperplasia appear to be genetic, most often with inactivating mutations of ARMC5, a putative tumor-suppressor gene. Genetic testing for this condition, which often has a long and insidious prediagnostic course, might result in earlier identification and better management. (Funded by Agence Nationale de la Recherche and others.).


The Journal of Clinical Endocrinology and Metabolism | 2013

Identification of a CpG Island Methylator Phenotype in Adrenocortical Carcinomas

Olivia Barreau; Guillaume Assié; Hortense Wilmot-Roussel; Bruno Ragazzon; Camille Baudry; Karine Perlemoine; F. René-Corail; Xavier Bertagna; Bertrand Dousset; Nadim Hamzaoui; Frédérique Tissier; Aurélien de Reyniès; Jérôme Bertherat

PURPOSE DNA methylation is a mechanism for gene expression silencing in cancer. Limited information is available for adrenocortical tumors. Abnormal methylation at the IGF2/H19 locus is common in adrenocortical carcinomas. Our aim was to characterize the methylation in adrenocortical carcinomas at a whole-genome scale and to assess its clinical significance and its impact on gene expression. EXPERIMENTAL DESIGN Methylation patterns of CpG islands in promoter regions of 51 adrenocortical carcinomas and 84 adenomas were studied by the Infinium HumanMethylation27 Beadchip (Illumina, San Diego, CA). Methylation of 33 genes was studied by methylation-specific multiplex ligation-dependent probe amplification (MRC-Holland, Amsterdam, The Netherlands) in 15 carcinomas. Gene expression data were available for 87 tumors from a previous study (HG-U133Plus2.0 AffymetrixGeneChip; Affymetrix, Santa Clara, CA). Clinical information, including patient features and survival, were available for all tumors. RESULTS Methylation was higher in carcinomas than in adenomas (t test P = 3.1 × 10(-9)). Unsupervised clustering of DNA methylation profiles identified two groups of carcinomas, one with an elevated methylation level, evoking a CpG island methylator phenotype (CIMP). The subgroup of hypermethylated carcinomas was further divided in two subgroups, with different levels of methylation (CIMP-high and CIMP-low). This classification could be confirmed by methylation-specific multiplex ligation-dependent probe amplification. Hypermethylation was associated with a poor survival (Cox model P = 0.02). The transcriptome/methylation correlation showed 1741 genes (of 12,250) negatively correlated; among the top genes were H19 and other tumor suppressors (PLAGL-1, G0S2, and NDRG2). CONCLUSIONS This genome-wide methylation analysis reveals the existence of hypermethylated adrenocortical carcinomas, with a poorer prognosis. Hypermethylation in these tumors is important for silencing specific tumor suppressor genes.


The Journal of Clinical Endocrinology and Metabolism | 2012

Clinical and Pathophysiological Implications of Chromosomal Alterations in Adrenocortical Tumors: An Integrated Genomic Approach

Olivia Barreau; Aurélien de Reyniès; Hortense Wilmot-Roussel; Marine Guillaud-Bataille; Colette Auzan; F. René-Corail; Frédérique Tissier; Bertrand Dousset; Xavier Bertagna; Jérôme Bertherat; Eric Clauser; Guillaume Assié

PURPOSE Diagnosing malignancy of adrenocortical tumors (ACT) and predicting prognosis in carcinomas are often challenging. Transcriptome markers have recently emerged, providing promising clinical relevance and improved pathophysiological knowledge. Whether tumoral chromosomal alterations provide similar information is not known. The aim was to evaluate the diagnostic and prognostic value of chromosomal alterations in ACT and to identify genes associated with benign and malignant tumorigenesis. EXPERIMENTAL DESIGN Chromosomal alterations of 86 adenomas and 52 carcinomas were identified by comparative genomic hybridization arrays and/or quantitative PCR. RESULTS A larger proportion of the genome is altered in carcinomas compared with adenomas (44 vs. 10%, P = 2.10(-10)). In adenomas, the 9q34 region, which includes the steroidogenic factor 1 locus, is commonly gained and associated with an overexpression of steroidogenic factor 1 (SF-1). In carcinomas, recurrent gains include chromosomes 5, 7, 12, 16, 19, and 20 and recurrent losses chromosomes 13 and 22. Filtering the genes from these regions according to their expression profile identified genes potentially relevant to adrenocortical tumorigenesis. A diagnostic tool was built by combining DNA copy number estimates at six loci (5q, 7p, 11p, 13q, 16q, and 22q). This tool discriminates carcinomas from adenomas in an independent validation cohort (sensitivity 100%, specificity 83%). In carcinomas, the number of chromosomal alterations was not associated with survival (Cox P = 0.84). A prognostic tool based on tumor DNA was designed with a clustering strategy and validated in an independent cohort. CONCLUSIONS Chromosomal alterations in ACT discriminate carcinomas from adenomas and contain prognostic information. Chromosomal alterations alter the expression of genes important for tumorigenesis.


The Journal of Clinical Endocrinology and Metabolism | 2013

Identification of Gene Expression Profiles Associated With Cortisol Secretion in Adrenocortical Adenomas

Hortense Wilmot Roussel; Delphine Vezzosi; Marthe Rizk-Rabin; Olivia Barreau; Bruno Ragazzon; F. René-Corail; Aurélien de Reyniès; Jérôme Bertherat; Guillaume Assié

CONTEXT The cortisol secretion of adrenocortical adenomas can be either subtle or overt. The mechanisms leading to the autonomous hypersecretion of cortisol are unknown. OBJECTIVE The objective of the study was to identify the gene expression profile associated with the autonomous and excessive cortisol secretion of adrenocortical adenomas. PATIENTS AND METHODS The transcriptome of 22 unilateral adrenocortical adenomas (5 nonsecreting, 6 subclinical cortisol producing, 11 cortisol producing) was studied and correlated with cortisol secretion. Phosphodiesterase 8B (PDE8B) expression was measured by Western blot. RESULTS Unsupervised clustering identified 2 groups of adenomas with a difference in secretion level (P = .008). Cluster 1 included only cortisol-producing adenomas (8 of 11), whereas cluster 2 was an admixture of the nonsecreting, the subclinical cortisol-secreting, and 3 of the 11 cortisol-secreting adenomas (Fisher exact, P = .002). This cluster was driven by genes related to cortisol secretion and to extracellular matrix. More than 3000 genes correlated with cortisol secretion. Among the positively correlated were the steroidogenic enzymes, genes involved in cholesterol metabolism, and glutathione S-transferases. Among the negatively correlated genes were genes related to transcripts translation and the transcription factor GATA-6. The PDE8B, which inactivates the protein kinase A pathway, unexpectedly showed the strongest positive correlation with cortisol secretion, confirmed by Western blot. The protein kinase A-activity to cAMP ratio was increased in adenomas with high PDE8B levels, suggesting counterregulation to limit downstream activation of the pathway. CONCLUSION The transcriptome of adrenocortical adenomas reveals a major association with cortisol secretion and identifies specific groups of genes implicated in steroid secretion, suggesting that cAMP signaling alterations might be frequent in cortisol-secreting adenomas.


PLOS ONE | 2014

IGF2 Promotes Growth of Adrenocortical Carcinoma Cells, but Its Overexpression Does Not Modify Phenotypic and Molecular Features of Adrenocortical Carcinoma

Marine Guillaud-Bataille; Bruno Ragazzon; Aurélien de Reyniès; Claire Chevalier; Isabelle Francillard; Olivia Barreau; Virginie Steunou; Johann Guillemot; Frédérique Tissier; Marthe Rizk-Rabin; F. René-Corail; Abir Al Ghuzlan; Guillaume Assié; Xavier Bertagna; Eric Baudin; Yves Le Bouc; Jérôme Bertherat; Eric Clauser

Insulin-like growth factor 2 (IGF2) overexpression is an important molecular marker of adrenocortical carcinoma (ACC), which is a rare but devastating endocrine cancer. It is not clear whether IGF2 overexpression modifies the biology and growth of this cancer, thus more studies are required before IGF2 can be considered as a major therapeutic target. We compared the phenotypical, clinical, biological, and molecular characteristics of ACC with or without the overexpression of IGF2, to address these issues. We also carried out a similar analysis in an ACC cell line (H295R) in which IGF2 expression was knocked down with si- or shRNA. We found no significant differences in the clinical, biological and molecular (transcriptomic) traits between IGF2-high and IGF2-low ACC. The absence of IGF2 overexpression had little influence on the activation of tyrosine kinase pathways both in tumors and in H295 cells that express low levels of IGF2. In IGF2-low tumors, other growth factors (FGF9, PDGFA) are more expressed than in IGF2-high tumors, suggesting that they play a compensatory role in tumor progression. In addition, IGF2 knock-down in H295R cells substantially impaired growth (>50% inhibition), blocked cells in G1 phase, and promoted apoptosis (>2-fold). Finally, analysis of the 11p15 locus showed a paternal uniparental disomy in both IGF2-high and IGF2-low tumors, but low IGF2 expression could be explained in most IGF2-low ACC by an additional epigenetic modification at the 11p15 locus. Altogether, these observations confirm the active role of IGF2 in adrenocortical tumor growth, but also suggest that other growth promoting pathways may be involved in a subset of ACC with low IGF2 expression, which creates opportunities for the use of other targeted therapies.


The Journal of Clinical Endocrinology and Metabolism | 2016

DNA methylation is an independent prognostic marker of survival in adrenocortical cancer.

Anne Jouinot; Guillaume Assié; Rossella Libé; Martin Fassnacht; Thomas G. Papathomas; Olivia Barreau; Bruno de La Villéon; Simon Faillot; Nadim Hamzaoui; M. Neou; Karine Perlemoine; F. René-Corail; S. Rodriguez; Mathilde Sibony; Frédérique Tissier; Bertrand Dousset; Silviu Sbiera; Cristina L. Ronchi; Matthias Kroiss; Esther Korpershoek; Ronald R. de Krijger; Jens Waldmann; Detlef K. Bartsch; Marcus Quinkler; Magalie Haissaguerre; Antoine Tabarin; Olivier Chabre; Nathalie Sturm; Michaela Luconi; Franco Mantero

Context Adrenocortical cancer (ACC) is an aggressive tumor with a heterogeneous outcome. Prognostic stratification is difficult even based on tumor stage and Ki67. Recently integrated genomics studies have demonstrated that CpG islands hypermethylation is correlated with poor survival. Objective The goal of this study was to confirm the prognostic value of CpG islands methylation on an independent cohort. Design Methylation was measured by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Setting MS-MLPA was performed in a training cohort of 50 patients with ACC to identify the best set of probes correlating with disease-free survival (DFS) and overall survival (OS). These outcomes were validated in an independent cohort from 21 ENSAT centers. Patients The validation cohort included 203 patients (64% women, median age 50 years, 80% localized tumors). Main Outcome Measures DFS and OS. Results In the training cohort, mean methylation of 4 genes (PAX5, GSTP1, PYCARD, PAX6) was the strongest methylation marker. In the validation cohort, methylation was a significant prognostic factor of DFS (P < 0.0001) and OS (P < 0.0001). Methylation, Ki67, and ENSAT stage were combined in multivariate models. For DFS, methylation (P = 0.0005) and stage (P < 0.0001) but not Ki67 (P = 0.19) remained highly significant. For OS, methylation (P = 0.0006), stage (P < 0.0001), and Ki67 (P = 0.024) were independent prognostic factors. Conclusions Tumor DNA methylation emerges as an independent prognostic factor in ACC. MS-MLPA is readily compatible with clinical routine and should enhance our ability for prognostication and precision medicine.


Cancer Research | 2014

Abstract LB-182: Constitutive activation of PRKACA in adrenal Cushing's syndrome

Fabio R. Faucz; Felix Beuschlei; Martin Fassnacht; Guilaume Assie; Davide Calebiro; Constantine A. Stratakis; Andrea Osswald; Cristina L. Ronchi; Thomas Wieland; Silviu Sbiera; Katrin Schaak; Anett Schmittfull; Thomas Schwarzmayr; Olivia Barreau; Delphine Vezzosi; Marthe Rizk-Rabbin; Ulrike Zabel; Eva Szarek; Paraskevi Salpea; Antonella Forlino; Annalisa Vetro; Orsetta Zuffardi; Caroline Kisker; Susanne Diener; Thomas Meitinger; Martin J. Lohse; Martin Reincke; Jérôme Bertherat; Tim M. Strom; Bruno Allolio

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Corticotropin-independent Cushings syndrome may be caused by tumors or hyperplasia of the adrenal cortex. Until now genetic alterations explain only a small fraction of cases. The observation that a subset of adrenal adenomas is characterized by abnormal PKA activity despite the absence of mutations in candidate genes suggested as yet unknown alterations in the cAMP/PKA signaling cascade in these tumors. The aim of this study was the analysis of the genetic basis of Cushings syndrome in order to reveal the gene/s responsible for the disease. Exome sequencing was performed in ten cortisol-producing adenomas and recurrent mutations in candidate genes were evaluated in additional 171 patients with adrenocortical tumors. Genome-wide copy number analysis was performed in 35 patients with cortisol secreting bilateral hyperplasias. The effects of these genetic defects were studied both clinically and in vitro. Exome sequencing in 8/10 adenomas revealed somatic mutations in the PRKACA gene, which encodes the main catalytic subunit of cyclic AMP-dependent protein kinase (PKA) (c.617A>C in seven and c.595_596insCAC in one). Overall, PRKACA somatic mutations were identified in a total of 22/59 (37%) adenomas from patients with overt Cushings syndrome while these mutations were not detectable in patients with subclinical hypercortisolism (n=40) or in other adrenal tumors (n=82). Among 35 patients with cortisol producing hyperplasias, 5 (with two patients as first degree relatives) carried germline copy number gain of the chromosome 19 region including the PRKACA gene. In vitro studies demonstrated impaired inhibition of the mutant PRKACA by the PKA regulatory subunit, while cells from patients with germline chromosomal gains showed increased protein levels; in both cases, PKA activity was increased. The present study shows that more than one third of cortisol-producing adenomas associated with overt Cushing syndrome harbor unique somatic mutations of the main cAMP-dependent kinase catalytic subunit, PRKACA resulting in constitutive PKA activation. While in these patients the mutation is present only in tumor cells, germline duplication of the PRKACA gene was identified in a group of patients with bilateral adrenal hyperplasias. This is the first report of genetic alterations of the catalytic subunit of PKA linked to human disease: Germline PRKACA duplications with bilateral adrenal hyperplasias and somatic PRKACA mutations with unilateral cortisol producing adrenal adenomas. Citation Format: Fabio R. Faucz, Felix Beuschlei, Martin Fassnacht, Guilaume Assie, Davide Calebiro, Constantine Stratakis, Andrea Osswald, Cristina L. Ronchi, Thomas Wieland, Silviu Sbiera, Katrin Schaak, Anett Schmittfull, Thomas Schwarzmayr, Olivia Barreau, Delphine Vezzosi, Marthe Rizk-Rabbin, Ulrike Zabel, Eva Szarek, Paraskevi Salpea, Antonella Forlino, Annalisa Vetro, Orsetta Zuffardi, Caroline Kisker, Susanne Diener, Thomas Meitinger, Martin J. Lohse, Martin Reincke, Jerome Bertherat, Tim M. Strom, Bruno Allolio. Constitutive activation of PRKACA in adrenal Cushings syndrome. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr LB-182. doi:10.1158/1538-7445.AM2014-LB-182


Endocrine-related Cancer | 2013

Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients

Olivier Chabre; Rossella Libé; Guillaume Assié; Olivia Barreau; Jérôme Bertherat; Xavier Bertagna; Jean Jacques Feige; Nadia Cherradi

Collaboration


Dive into the Olivia Barreau's collaboration.

Top Co-Authors

Avatar

Guillaume Assié

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. René-Corail

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Karine Perlemoine

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bertrand Dousset

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bruno Ragazzon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Groussin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Rossella Libé

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Xavier Bertagna

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge