Olle Nyström
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olle Nyström.
Astronomy and Astrophysics | 2008
Vessen Vassilev; Denis Meledin; Igor Lapkin; Victor Belitsky; Olle Nyström; Doug Henke; Alexey Pavolotsky; Raquel Monje; Christophe Risacher; Michael Olberg; Magnus Strandberg; Erik Sundin; Mathias Fredrixon; Sven-Erik Ferm; Vincent Desmaris; Dimitar Dochev; Miroslav Pantaleev; Per Bergman; Hans Olofsson
Aims. In March 2008, the APEX facility instrument was installed on the telescope at the site of Lliano Chajnantor in northern Chile. The main objective of the paper is to introduce the new instrument to the radio astronomical community. It describes the hardware configuration and presents some initial results from the on-sky commissioning. Methods. The heterodyne instrument covers frequencies between 211 GHz and 1390 GHz divided into four bands. The first three bands are sideband-separating mixers operating in a single sideband mode and based on superconductor-insulator-superconductor (SIS) tunnel junctions. The fourth band is a hot-electron bolometer, waveguide balanced mixer. All bands are integrated in a closedcycle temperature-stabilized cryostat and are cooled to 4 K. Results. We present results from noise temperature, sideband separation ratios, beam, and stability measurements performed on the telescope as a part of the receiver technical commissioning. Examples of broad extragalactic lines are also included.
IEEE Transactions on Microwave Theory and Techniques | 2009
Denis Meledin; Alexey Pavolotsky; Vincent Desmaris; Igor Lapkin; Christophe Risacher; Victor Perez; Douglas Henke; Olle Nyström; Erik Sundin; Dimitar Dochev; Miroslav Pantaleev; Mathias Fredrixon; Magnus Strandberg; B. Voronov; Gregory N. Goltsman; Victor Belitsky
In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25-1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90 times 180 mum ). We present details on the mixer design and measurement results, including receiver noise performance, stability and ldquofirst-lightrdquo at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.
IEEE Transactions on Terahertz Science and Technology | 2012
Bhushan Billade; Olle Nyström; Denis Meledin; Erik Sundin; Igor Lapkin; Mathias Fredrixon; Vincent Desmaris; Hawal Marouf Rashid; Magnus Strandberg; Sven-Erik Ferm; Alexey Pavolotsky; Victor Belitsky
We present performance of the first ALMA Band 5 production cartridge, covering frequencies from 163 to 211 GHz. Atacama Large Millimeter/sub-millimeter Array (ALMA) Band 5 is a dual polarization, sideband separation (2SB) receiver based on all Niobium (Nb) superconductor-insulator-superconductor (SIS) tunnel junction mixers, providing 16 GHz of instantaneous RF bandwidth for astronomy observations. The 2SB mixer for each polarization employs a quadrature configuration. The sideband separation occurs at the output of the IF hybrid that has integrated bias-T for biasing the mixers, and is produced using superconducting thin-film technology. Experimental verification of the Band 5 cold cartridge performed together with warm cartridge assembly, confirms that the system noise temperature is below 45 K over most of the RF band, which is less than 5 photon noise (5 hf/k). This is to our knowledge, the best results reported at these frequencies. The measurement of the sideband rejection indicates that the sideband rejection is better than 10 dB over 90% of the observational band.
IEEE Microwave and Wireless Components Letters | 2008
Vessen Vassilev; Doug Henke; Igor Lapkin; Olle Nyström; Raquel Monje; Alexey Pavolotsky; Victor Belitsky
We present the final results of the development and characterization of the sideband separating superconductor-insulator-superconductor (SIS) mixer for the APEX telescope band 1 (211-275 GHz). The sideband separation is achieved by using a quadrature scheme where the radio frequency (RF) and a local oscillator (LO) power are applied to two identical double sideband SIS mixers. All mixer components, including the LO and RF distribution circuitry, are integrated into a single mixer block. To achieve a compact design we developed a superconducting Lange coupler, based on Nb thin film, which is used as an intermediate frequency hybrid. Typical single sideband noise temperature of 100 K and sideband rejection ratio of about 12 dB and are measured.
international conference on infrared, millimeter, and terahertz waves | 2007
Victor Belitsky; Igor Lapkin; Vessen Vassilev; Raquel Monje; Alexey Pavolotsky; Denis Meledin; Douglas Henke; Olle Nyström; Vincent Desmaris; Christophe Risacher; Magnus Svensson; Michael Olberg; Erik Sundin; Matthias Fredrixon; Dimitar Dochev; Sven-Erik Ferm; Hans Olofsson
APEX, the Atacama PAthflnder Experiment (APEX) Telescope, is a partnership between Max Planck Institut fur Radioastronomie (in collaboration with Astronomisches Institut Ruhr Universitat Bochum (AIRUB)), Onsala Space Observatory and the European Southern Observatory. The telescope antenna, supplied by VERTEX Antennentechnik, is a 12 m antenna with a 17 mum rms surface accuracy operating at the Atacama Desert in the Chilean Andes at a 5100 m altitude. The APEX heterodyne facility receiver is placed in the telescope Nasmyth Cabin A. The receivers are coupled to the antenna via relay optics allowing the operation of two different Pi-type instruments and a 6-channel facility heterodyne receiver to cover approximately 210 - 1500 GHz frequency range while providing frequency independent illumination of the secondary. In this report, we present details on the optics for the APEX facility heterodyne receiver and details of its design. The report includes a very brief review of the APEX Band 1, 211 - 270 GHz, Band 2, 270 - 370 GHz, Band 3, 385 - 500 GHz, all based on sideband separation SIS mixer technology and Band T2, 1250 - 1390 GHz, a balanced waveguide HEB mixer, all developed by GARD.
european conference on antennas and propagation | 2006
Olle Nyström; Miroslav Pantaleev; Vessen Vassilev; Igor Lapkin; Victor Belitsky
In this paper, we describe a novel vector measurement system for the characterization of Gaussian beams and present test results for mm-wave, 211-275 GHz, receiver optics alignment. The measurement setup allows a simpler design without any PLLs and employs a combination of a single frequency source, comb-generator, and direct multiplication LO and signal sources. The system takes advantage of different harmonics to generate the required RF and LO signals yielding the desired IF frequency while obtaining perfect phase-coherence and initial phase-noise cancellation. One of the additional advantages of the suggested measuring scheme is that it allows such design that it has the potential to cover different mm and sub-mm bands by only replacing two filters and the LO multiplication unit. For example, we plan to use the same setup, with mentioned modifications, for the frequency bands 275-370 GHz and 385-500 GHz.
international conference on infrared, millimeter, and terahertz waves | 2010
Victor Belitsky; Bhushan Billade; Vincent Desmaris; Dimitar Dochev; Mathias Fredrixon; Sven-Erik Ferm; Gert Johnsen; Igor Lapkin; Denis Meledin; Olle Nyström; Alexey Pavolotsky; Hawal Marouf Rashid; Erik Sundin; Magnus Strandberg
ALMA, Atacama Large Millimetre Array, covers the frequency band from 30 GHz to 960 GHz in ten separate frequency bands. We present here the design and performance of the ALMA Band 5 receiver cartridge that covers 163–211 GHz. The Band 5 receiver shows the state-of-the-art performance with the noise temperature below 65K (SSB) and sideband rejection above 12 dB over 80% of the RF band.
Journal of Infrared, Millimeter, and Terahertz Waves | 2009
Olle Nyström; Igor Lapkin; Vincent Desmaris; Dimitar Dochev; Sven-Erik Ferm; Mathias Fredrixon; Douglas Henke; Denis Meledin; Raquel Monje; Magnus Strandberg; Erik Sundin; Vessen Vassilev; Victor Belitsky
21st International Symposium on Space Terahertz Technology 2010, ISSTT 2010; Oxford; United Kingdom; 23 March 2010 through 25 March 2010 | 2010
Olle Nyström; Hawal Marouf Rashid; Bhushan Billade; Erik Sundin; Mathias Fredrixon; Gert Johnsen; Igor Lapkin; Denis Meledin; Magnus Strandberg; Ricardo Finger; Alexey Pavolotskiy; Vincent Desmaris; Victor Belitsky
Proceedings of the 20TH INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY, Charlottesville, VA, USA, April 20-22, 2009, s. 2-5 | 2009
Victor Belitsky; Igor Lapkin; Bhushan Billade; Erik Sundin; Alexey Pavolotsky; Denis Meledin; Vincent Desmaris; Magnus Strandberg; Ricardo Finger; Olle Nyström; Mathias Fredrixon; Sven-Erik Ferm; Hawal Marouf Rashid; Doug Henke