Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally Metsuyanim is active.

Publication


Featured researches published by Sally Metsuyanim.


Embo Molecular Medicine | 2013

Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease.

Orit Harari-Steinberg; Sally Metsuyanim; Dorit Omer; Yehudit Gnatek; Rotem Gershon; Sara Pri-Chen; Derya D. Ozdemir; Yaniv Lerenthal; Tzahi Noiman; Herzel Ben-Hur; Zvi Vaknin; David Schneider; Bruce J. Aronow; Ronald S. Goldstein; Peter Hohenstein; Benjamin Dekel

Identification of tissue‐specific renal stem/progenitor cells with nephrogenic potential is a critical step in developing cell‐based therapies for renal disease. In the human kidney, stem/progenitor cells are induced into the nephrogenic pathway to form nephrons until the 34 week of gestation, and no equivalent cell types can be traced in the adult kidney. Human nephron progenitor cells (hNPCs) have yet to be isolated. Here we show that growth of human foetal kidneys in serum‐free defined conditions and prospective isolation of NCAM1+ cells selects for nephron lineage that includes the SIX2‐positive cap mesenchyme cells identifying a mitotically active population with in vitro clonogenic and stem/progenitor properties. After transplantation in the chick embryo, these cells—but not differentiated counterparts—efficiently formed various nephron tubule types. hNPCs engrafted and integrated in diseased murine kidneys and treatment of renal failure in the 5/6 nephrectomy kidney injury model had beneficial effects on renal function halting disease progression. These findings constitute the first definition of an intrinsic nephron precursor population, with major potential for cell‐based therapeutic strategies and modelling of kidney disease.


Journal of Cellular and Molecular Medicine | 2009

Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population

Naomi Pode-Shakked; Sally Metsuyanim; Eithan Rom-Gross; Yoram Mor; Eduard Fridman; Itamar Goldstein; Ninette Amariglio; Gideon Rechavi; Gilmor Keshet; Benjamin Dekel

During development, renal stem cells reside in the nephrogenic blastema. Wilms’ tumour (WT), a common childhood malignancy, is suggested to arise from the nephrogenic blastema that undergoes partial differentiation and as such is an attractive model to study renal stem cells leading to cancer initiation and maintenance. Previously we have made use of blastema‐enriched WT stem‐like xenografts propagated in vivo to define a ‘WT‐stem’ signature set, which includes cell surface markers convenient for cell isolation (frizzled homolog 2 [Drosophila] – FZD2, FZD7, G‐protein coupled receptor 39, activin receptor type 2B, neural cell adhesion molecule – NCAM). We show by fluorescence‐activated cell sorting analysis of sphere‐forming heterogeneous primary WT cultures that most of these markers and other stem cell surface antigens (haematopoietic, CD133, CD34, c‐Kit; mesenchymal, CD105, CD90, CD44; cancer, CD133, MDR1; hESC, CD24 and putative renal, cadherin 11), are expressed in WT cell sub‐populations in varying levels. Of all markers, NCAM, CD133 and FZD7 were constantly detected in low‐to‐moderate portions likely to contain the stem cell fraction. Sorting according to FZD7 resulted in extensive cell death, while sorted NCAM and CD133 cell fractions were subjected to clonogenicity assays and quantitative RT‐PCR analysis, exclusively demonstrating the NCAM+ fraction as highly clonogenic, overexpressing the WT ‘stemness’ genes and topoisomerase2A (TOP2A), a bad prognostic marker for WT. Moreover, treatment of WT cells with the topoisomerase inhibitors, Etoposide and Irinotecan resulted in down‐regulation of TOP2A along with NCAM and WT1. Thus, we suggest NCAM as a marker for the WT progenitor cell population. These findings provide novel insights into the cellular hierarchy of WT, having possible implications for future therapeutic options.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Haplotype structure and selection of the MDM2 oncogene in humans

Gurinder Singh Atwal; Gareth L. Bond; Sally Metsuyanim; Moshe Z. Papa; Eitan Friedman; Tal Distelman-Menachem; Edna Ben Asher; Doron Lancet; David Ross; John J. Sninsky; Tomas J. White; Arnold J. Levine; Ronit I. Yarden

The MDM2 protein is an ubiquitin ligase that plays a critical role in regulating the levels and activity of the p53 protein, which is a central tumor suppressor. A SNP in the human MDM2 gene (SNP309 T/G) occurs at frequencies dependent on demographic history and has been shown to have important differential effects on the activity of the MDM2 and p53 proteins and to associate with altered risk for the development of several cancers. In this report, the haplotype structure of the MDM2 gene is determined by using 14 different SNPs across the gene from three different population samples: Caucasians, African Americans, and the Ashkenazi Jewish ethnic group. The results presented in this report indicate that there is a substantially reduced variability of the deleterious SNP309 G allele haplotype in all three populations studied, whereas multiple common T allele haplotypes were found in all three populations. This observation, coupled with the relatively high frequency of the G allele haplotype in both and Caucasian and Ashkenazi Jewish population data sets, suggests that this haplotype could have undergone a recent positive selection sweep. An entropy-based selection test is presented that explicitly takes into account the correlations between different SNPs, and the analysis of MDM2 reveals a significant departure from the standard assumptions of selective neutrality.


Oncogene | 2011

Resistance or sensitivity of Wilms’ tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target

N. Pode-Shakked; Orit Harari-Steinberg; Y. Haberman-Ziv; Eithan Rom-Gross; S. Bahar; Dorit Omer; Sally Metsuyanim; Ella Buzhor; Jasmine Jacob-Hirsch; Ronald S. Goldstein; M. Mark-Danieli; Benjamin Dekel

Wilms’ tumor (WT), the most frequent renal solid tumor in children, has been linked to aberrant Wnt signaling. Herein, we demonstrate that different WTs can be grouped according to either sensitivity or resistance to an antibody (Ab) specific to frizzled7 (FZD7), a Wnt receptor. In the FZD7-sensitive WT phenotype, the Ab induced cell death of the FZD7+ fraction, which in turn depleted primary WT cultures of their clonogenic and sphere-forming cells and decreased in vivo proliferation and survival on xenografting to the chick chorio-allantoic-membrane. In contrast, FZD7-resistant WT in which no cell death was induced showed a different intra-cellular route of the Ab-FZD7 complex compared with sensitive tumors and accumulation of β-catenin. This coincided with a low sFRP1 and DKK1 (Wnt inhibitors) expression pattern, restored epigenetically with de-methylating agents, and lack of β-catenin or WTX mutations. The addition of exogenous DKK1 and sFRP1 to the tumor cells enabled the sensitization of FZD7-resistant WT to the FZD7 Ab. Finally, although extremely difficult to achieve because of dynamic cellular localization of FZD7, sorting of FZD7+ cells from resistant WT, showed them to be highly clonogenic/proliferative, overexpressing WT ‘stemness’ genes, emphasizing the importance of targeting this fraction. FZD7 Ab therapy alone or in combination with Wnt pathway antagonists may have a significant role in the treatment of WT via targeting of a tumor progenitor population.


American Journal of Pathology | 2013

Reactivation of NCAM1 Defines a Subpopulation of Human Adult Kidney Epithelial Cells with Clonogenic and Stem/Progenitor Properties

Ella Buzhor; Dorit Omer; Orit Harari-Steinberg; Zohar Dotan; Einav Vax; Sara Pri-Chen; Sally Metsuyanim; Oren Pleniceanu; Ronald S. Goldstein; Benjamin Dekel

The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases.


Oncogene | 2013

BRCA1 targets G2/M cell cycle proteins for ubiquitination and proteasomal degradation

Shabana Shabbeer; Dorit Omer; Dana Berneman; Osnat Weitzman; Alexandra Alpaugh; Alexandra Pietraszkiewicz; Sally Metsuyanim; Alla Shainskaya; Moshe Z. Papa; Ronit I. Yarden

The BRCA1 tumor suppressor protein heterodimerizes with its partner protein, BARD1, via the RING domain present in both proteins. The heterodimer contains an E3 ubiquitin ligase activity and participates in multiple cellular functions such as cell cycle control, DNA repair and regulation of gene transcription, collectively aimed at maintaining genomic stability and tumor suppression. Yet, the precise role of BRCA1 E3 ligase in these cellular functions is poorly understood. We present data showing that BRCA1 ubiquitinates G2/M cell cycle proteins, cyclin B and Cdc25C, leading to their accelerated degradation via a mechanism that is independent of APC/C. BRCA1-dependent degradation of cyclin B and Cdc25C is reversed by proteasome inhibitors and is enhanced following DNA damage, which may represent a possible mechanism to prevent cyclin B and Cdc25C accumulation, a requirement for mitotic entry. Our data provide mechanistic insight into how BRCA1 E3 ligase activity regulates the G2/M cell cycle checkpoint and, thus, contributes to maintenance of genomic stability.


Organogenesis | 2011

A rapid in-vivo assay system for analyzing the organogenetic capacity of human kidney cells

Tsahi Noiman; Ella Buzhor; Sally Metsuyanim; Orit Harari-Steinberg; Chaya Morgenshtern; Benjamin Dekel; Ronald S. Goldstein

Transplantation of human kidney-derived cells is a potential therapeutic modality for promoting regeneration of diseased renal tissue. However, assays that determine the ability of candidate populations for renal cell therapy to undergo appropriate differentiation and morphogenesis are limited. We report here a rapid and humane assay for characterizing tubulogenic potency utilizing the well-established chorioallantoic membrane CAM) of the chick embryo. Adult human kidney-derived cells expanded in monolayer were suspended in Matrigel and grafted onto the CAM. After a week, grafts were assessed histologically. Strikingly, many of the renal cells self-organized into tubular structures. Host blood vessels penetrated and presumably fed the grafts. Immuno- and histochemical staining revealed that tubular structures were epithelial, but not blood vessels. Some of the cells both within and outside the tubules were dividing. Analysis for markers of proximal and distal renal tubules revealed that grafts contained individual cells of a proximal tubular phenotype and many tubules of distal tubule character. Our results demonstrate that the chick CAM is a useful xenograft system for screening for differentiation and morphogenesis in cells with potential use in renal regenerative medicine.


The International Journal of Biochemistry & Cell Biology | 2012

BRCA1-dependent Chk1 phosphorylation triggers partial chromatin disassociation of phosphorylated Chk1 and facilitates S-phase cell cycle arrest.

Ronit I. Yarden; Sally Metsuyanim; Itay Pickholtz; Shabana Shabbeer; Hadass Tellio; Moshe Z. Papa

Chk1 phosphorylation by the PI3-like kinases ATR and ATM is critical for its activation and its role in prevention of premature mitotic entry in response to DNA damage or stalled replication. The breast and ovarian tumor suppressor, BRCA1, is among several checkpoint mediators that are required for Chk1 activation by ATM and ATR. Previously we showed that BRCA1 is necessary for Chk1 phosphorylation and activation following ionizing radiation. BRCA1 has been implicated in S-phase checkpoint control yet its mechanism of action is not well characterized. Here we report that BRCA1 is critical for Chk1 phosphorylation in response to inhibition of replication by either cisplatin or hydroxyurea. While Chk1 phosphorylation of S317 is fully dependent on BRCA1, additional proteins may mediate S345 phosphorylation at later time points. In addition, we show that a subset of phosphorylated Chk1 is released from the chromatin in a BRCA1-dependent manner which may lead to the phosphorylation of Chk1 substrate, Cdc25C, on S216 and to S-phase checkpoint activation. Inhibition of Chk1 kinase by UCN-01 or expression of Chk1 phosphorylation mutants in which the serine residues were substituted with alanine residues abrogates BRCA1-dependent cell cycle arrest in response replication inhibition. These data reveal that BRCA1 facilitates Chk1 phosphorylation and its partial chromatin dissociation following replication inhibition that is likely to be required for S-phase checkpoint signaling.


Cellular Reprogramming | 2013

Chromatin-modifying agents reactivate embryonic renal stem/progenitor genes in human adult kidney epithelial cells but abrogate dedifferentiation and stemness

Dorit Omer; Orit Harari-Steinberg; Ella Buzhor; Sally Metsuyanim; Oren Pleniceanu; Adi Zundelevich; Einav Nili Gal-Yam; Benjamin Dekel

Recent studies have suggested that epigenetic modulation with chromatin-modifying agents can induce stemness and dedifferentiation and increase developmental plasticity. For instance, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has been shown to promote self-renewal/expansion of hematopoietic stem cells and facilitate the generation of induced pluripotent stem cells (iPSCs). Previously, we observed that downregulation of embryonic renal stem/progenitor genes in the adult kidney was associated, at least in part, with epigenetic silencing. Therefore, we hypothesized that VPA may alter the expression of these genes and reprogram mature human adult kidney epithelial cells (hKEpCs) to a stem/progenitor-like state. Here, using quantitative RT-PCR and flow cytometry [fluorescence-activated cell sorting (FACS)] analysis, we show in VPA-treated primary cultures of human adult and fetal kidney significant reinduction of the renal stem/progenitor markers SIX2, OSR1, SALL1, NCAM, and PSA-NCAM. Robust SIX2 mRNA re-expression was confirmed at the protein level by western blot and was associated with epigenetic changes of the histones at multiple sites of the SIX2 promoter leading to gene activation, significantly increased acetylation of histones H4, and methylation of lysine 4 on H3. Furthermore, we could demonstrate synergistic effects of VPA and Wnt antagonists on SIX2 and also OSR1 reinduction. Nevertheless, VPA resulted in upregulation of E-CADHERIN and reduction in VIMENTIN, preventing the skewing of hKEpCs towards a more replicative mesenchymal state required for clonogenic expansion and acquisition of stem cell characters, altogether inducing cell senescence at early passages. These results demonstrating that chromatin-modifying agents prevent dedifferentiation of hKEpCs have important clinical implications as they may limit ex-vivo self-renewal/expansion and possibly the in vivo renal regenerative capacity initiated by dedifferentiation.


Leukemia | 2008

Organ-injury-induced reactivation of hemangioblastic precursor cells.

Benjamin Dekel; Sally Metsuyanim; A. M. García; C. Quintero; María José Sánchez; Shai Izraeli

Early in mammalian development, the stem cell leukemia (SCL/TAL1) gene and its distinct 3′ enhancer (SCL 3′En) specify bipotential progenitor cells that give rise to blood and endothelium, thus termed hemangioblasts. We have previously detected a minor population of SCL (+) cells in the postnatal kidney. Here, we demonstrate that cells expressing the SCL 3′En in the adult kidney are comprised of CD45+CD31− hematopoietic cells, CD45−CD31+ endothelial cells and CD45−CD31− interstitial cells. Creation of bone marrow chimeras of SCL 3′En transgenic mice into wild-type hosts shows that all three types of SCL 3′En-expressing cells in the adult kidney can originate from the bone marrow. Ischemia/reperfusion injury to the adult kidney of SCL 3′En transgenic mice results in the intrarenal elevation of SCL and FLK1 mRNA levels and of cells expressing hem-endothelial progenitor markers (CD45, CD34, c-Kit and FLK1). Furthermore, analysis of SCL 3′En in the ischemic kidneys reveals an increase in the abundance of SCL 3′En-expressing cells, predominantly within the CD45 (+) hematopoietic fraction and to a lesser extent in the CD45 (−) fraction. Our results suggest organ-injury-induced reactivation of bone marrow-derived hemangioblasts and possible local angioblastic progenitors expressing SCL and SCL 3′En.

Collaboration


Dive into the Sally Metsuyanim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge