Osamu Yamanoshita
Chubu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Osamu Yamanoshita.
Journal of Occupational Health | 2007
Yuki Ito; Osamu Yamanoshita; Nobuyuki Asaeda; Yoshiaki Tagawa; Chul-Ho Lee; Toshifumi Aoyama; Gaku Ichihara; Koichi Furuhashi; Michihiro Kamijima; Frank J. Gonzalez; Tamie Nakajima
Di(2‐ethylhexyl)phthalate Induces Hepatic Tumorigenesis through a Peroxisome Proliferator‐activated Receptor α‐independent Pathway: Yuki Ito, et al. Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine—Di(2ethylhexyl)phthalate (DEHP), a commonly used industrial plasticizer, causes liver tumorigenesis presumably via activation of peroxisome proliferator‐activated receptor alpha (PPARα). The mechanism of DEHP tumorigenesis has not been fully elucidated, and to clarify whether DEHP tumorigenesis is induced via PPARα, we compared DEHP‐induced tumorigenesis in wild‐type and Pparα‐null mice. Mice of each genotype were divided into three groups, and treated for 22 months with diets containing 0, 0.01 or 0.05% DEHP. Surprisingly, the incidence of liver tumors was higher in Pparα‐null mice exposed to 0.05% DEHP (25.8%) than in similarly exposed wild‐type mice (10.0%). These results suggest the existence of pathways for DEHP‐induced hepatic tumorigenesis that are independent of PPARα. The levels of 8‐OHdG increased dose‐dependently in mice of both genotypes, but the degree of increase was higher in Pparα‐null than in wild‐type mice. NFκB levels also significantly increased in a dose‐dependent manner in Pparα‐null mice. The protooncogene c‐jun‐mRNA was induced, and c‐fos‐mRNA tended to be induced only in Pparα‐null mice fed a 0.05% DEHP‐containing diet. These results suggest that increases in oxidative stress induced by DEHP exposure may lead to the induction of inflammation and/or the expression of protooncogenes, resulting in a high incidence of tumorigenesis in Pparα‐null mice.
Archives of Toxicology | 2005
Yuki Ito; Hiroshi Yokota; Rui-Sheng Wang; Osamu Yamanoshita; Gaku Ichihara; Hailan Wang; Yoshimasa Kurata; Kenji Takagi; Tamie Nakajima
To clarify species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) we measured the activity of four DEHP-metabolizing enzymes (lipase, UDP-glucuronyltransferase (UGT), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH)) in several organs (the liver, lungs, kidneys, and small intestine) of mice (CD-1), rats (Sprague–Dawley), and marmosets (Callithrix jacchus). Lipase activity, measured by the rate of formation of mono(2-ethylhexyl) phthalate (MEHP) from DEHP, differed by 27- to 357-fold among species; the activity was highest in the small intestines of mice and lowest in the lungs of marmosets. This might be because of the significant differences between Vmax/Km values of lipase for DEHP among the species. UGT activity for MEHP in the liver microsomes was highest in mice, followed by rats and marmosets. These differences, however, were only marginal compared with those for lipase activity. ADH and ALDH activity also differed among species; the activity of the former in the livers of marmosets was 1.6–3.9 times greater than in those of rats or mice; the activity of the latter was higher in rats and marmosets (2–14 times) than in mice. These results were quite different from those for lipase or UGT activity. Because MEHP is considered to be the more potent ligand to peroxisome proliferator-activated receptor α involved in different toxic processes, a possibly major difference in MEHP-formation capacity could be also considered on extrapolation from rodents to humans.
Dermatology Research and Practice | 2012
Ichiro Yajima; Mayuko Y. Kumasaka; Nguyen Dinh Thang; Yuji Goto; Kozue Takeda; Osamu Yamanoshita; Machiko Iida; Nobutaka Ohgami; Haruka Tamura; Yoshiyuki Kawamoto; Masashi Kato
Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.
Journal of skin cancer | 2011
Ichiro Yajima; Mayuko Y. Kumasaka; Nguyen Dinh Thang; Yuji Goto; Kozue Takeda; Machiko Iida; Nobutaka Ohgami; Haruka Tamura; Osamu Yamanoshita; Yoshiyuki Kawamoto; Keiko Furukawa; Masashi Kato
Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients, understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular networks associated with MITF in skin melanoma development and progression.
Journal of Occupational Health | 2003
Tamie Nakajima; Osamu Yamanoshita; Michihiro Kamijima; Reiko Kishi; Gaku Ichihara
Generalized Skin Reactions in Relation to Trichloroethylene Exposure: A Review from the Viewpoint of Drug‐metabolizing Enzymes: Tamie Nakajima, et al. Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine—The literature was reviewed to study cases of intoxication with systemic dermatitis associated with exposure to trichloroethylene. The average age of patients in the reports reviewed to date was twenty‐nine; these diseases were found in relatively young persons and no difference was found according to gender. Many cases occurred within one month after the onset of exposure to trichloroethylene, and were accompanied by hepatitis, jaundice, hepatomegaly or hepatosplenomegaly. Most of the patients had no history of drug abuse or herpes infection. The level of exposure to trichloroethylene was not recorded in many cases, but ranged from less than 9 ppm to 800 ppm. In the severest cases, the lesions involved mucous membranes such as the conjunctiva and oral cavity, and the patients were diagnosed with Stevens‐Johnson syndrome, but the etiology of the disease after trichloroethylene exposure remains unclear. Since several drugs have also been shown to cause systemic dermatitis with hepatitis, susceptibility factors are discussed. Many patients were found to have the slow acetylator genotype of Nacetyltransferase (NAT) 2, suggesting that the NAT2 genotype is a susceptibility factor. This hypothesis may also be applicable to trichloroethylene because NAT is involved in the glutathione‐mediated metabolism.
Journal of Occupational Health | 2009
Ai Okamura; Michihiro Kamijima; Katsumi Ohtani; Osamu Yamanoshita; Daichi Nakamura; Yuki Ito; Maiko Miyata; Jun Ueyama; Takayoshi Suzuki; Ryota Imai; Kenji Takagi; Tamie Nakajima
Broken Sperm, Cytoplasmic Droplets and Reduced Sperm Motility Are Principal Markers of Decreased Sperm Quality Due to Organophosphorus Pesticides in Rats: Ai Okamura, et al. Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine
International Journal of Cancer | 2005
Osamu Yamanoshita; Takeo Kubota; Jun Hou; Yu-Min Ping; Xiu-Lan Zhang; Xiang-Ping Li; Shao-Sen Li; Xiao-Xian Li; De-Chen Zhu; Yoshimitsu Fukushima; Tamie Nakajima
Mutations of the p53 tumor‐suppressor gene universally occur on exons 5–8 in human cancer. We analyzed these mutations in esophageal cancer tissue from 207 patients in China using 2 methods, single‐strand conformation polymorphism (SSCP), one of the most frequently used methods, and the recently developed denaturing high‐performance liquid chromatography (DHPLC), and compared their sensitivity and efficiency. Exons 5–8 of p53 were amplified from esophageal cancer tissue genomes, screened for fragments of mutations and polymorphisms by SSCP and DHPLC in a blind study and confirmed by direct sequencing to detect the mutations and polymorphisms. The numbers detected by DHPLC were greater than those detected by SSCP, though the rate of mutations and polymorphisms was lower in SSCP than in DHPLC, which appeared to detect smaller mutations (substitutions and 1 bp insertions/deletions). Of the mutations with substitutions detected by DHPLC but not by SSCP, 50% substituted adenosine for other nucleotides, suggesting that these mutations are often missed when SSCP is used. According to these data, the sensitivity of SSCP and DHPLC was 81% and 97%, respectively, and the specificity was 97% and 85%, respectively. Our results suggest that DHPLC may be recommended over SSCP when screening gene mutations. Thus, rates of p53 mutations and polymorphisms in esophageal cancer tissue in Chinese patients were 49% and 41% by DHPLC and SSCP, respectively.
Environmental Health Perspectives | 2008
Yukie Yanagiba; Yuki Ito; Osamu Yamanoshita; Shu-Yun Zhang; Gen Watanabe; Kazuyoshi Taya; Chun Mei Li; Yuko Inotsume; Michihiro Kamijima; Frank J. Gonzalez; Tamie Nakajima
Background Styrene trimers (STs) are polystyrene-container–eluted materials that are sometimes detected in packaged foods. Although the possible endocrine-disrupting effects of STs, such as estrogenic activities, have been reported, their potential thyroid toxicity, such as that caused by the related endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has not been studied in detail. Objective Using wild-type and aryl hydrocarbon receptor (Ahr)–null mice, we investigated whether 2,4,6-triphenyl-1-hexene (ST-1), an isomer of STs, influences thyroxin (T4) levels in the same manner as TCDD, which induces UDP-glucuronosyltransferase (UGT) via the AhR, resulting in a decrease in T4 levels in the plasma of mice. Methods Both wild-type and Ahr-null mice (five mice per group) were treated for 4 days by gavage with ST-1 (0, 32, or 64 μmol/kg). Results High-dose (64 μmol/kg) ST-1 decreased the expression of AhR, cytochrome P450 (CYP) 1A1/2, UGT1A1/A6, and CYP2B10 mRNAs and the enzyme activity for CYP1A and UGT1A only in the wild-type mice. This dose decreased AhR DNA binding, but paradoxically increased AhR translocation to the nucleus. In contrast, a high dose of ST-1 increased T4 levels in the plasma in wild-type mice but did not influence T4 levels in AhR-null mice. Conclusions Although ST-1 treatment might cause an increase in AhR levels in the nucleus by inhibiting AhR export, this chemical down-regulated AhR mRNA, thus leading to down-regulation of AhR target genes and an increase in plasma T4 levels.
Journal of Dermatological Science | 2013
Michihiro Kamijima; Hailan Wang; Osamu Yamanoshita; Yuki Ito; Lihua Xia; Yukie Yanagiba; Cishan Chen; Ai Okamura; Zhenlie Huang; Xinxiang Qiu; Xiangrong Song; Tingfeng Cai; Lili Liu; Yichen Ge; Yingyu Deng; Hisao Naito; Tetsushi Yoshikawa; Mikiko Tohyama; Laiyu Li; Hanlin Huang; Tamie Nakajima
BACKGROUND Trichloroethylene (TCE) is an industrial solvent which can cause severe generalized dermatitis, i.e., occupational TCE hypersensitivity syndrome. Reactivation of latent human herpesvirus 6 (HHV6) can occur in such patients, which has made TCE known as a causative chemical of drug-induced hypersensitivity syndrome (DIHS). OBJECTIVE This study aimed to clarify HHV6 status, cytokine profiles and their association with rash phenotypes in patients with TCE hypersensitivity syndrome. METHODS HHV6 DNA copy numbers, anti-HHV6 antibody titers, and cytokines were measured in blood prospectively sampled 5-7 times from 28 hospitalized patients with the disease. RESULTS The patients (19 had exfoliative dermatitis (ED) and 9 had non-ED type rash) generally met the diagnostic criteria for DIHS. Viral reactivation defined as increases in either HHV6 DNA (≥100 genomic copies/10(6) peripheral blood mononuclear cells) or antibody titers was identified in 24 (89%) patients. HHV6 DNA, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-5, IL-6 and IL-10 concentrations were remarkably higher in the patients than in the healthy workers (p<0.01). Positive correlations between HHV6 DNA, TNF-α, IFN-γ, IL-6 and IL-10 were significant (p<0.05) except for that between HHV6 DNA and IFN-γ. An increase in HHV6 DNA was positively associated with an increase in TNF-α on admission (p<0.01). HHV6 DNA, the antibody titers, TNF-α and IL-10 concentrations were significantly higher in ED than in the non-ED type (p<0.05). CONCLUSION Reactivated HHV6 and the increased cytokines could be biomarkers of TCE hypersensitivity syndrome. The higher-level reactivation and stronger humoral responses were associated with ED-type rash.
Journal of Cellular Biochemistry | 2010
Masashi Kato; Kozue Takeda; Khaled Hossain; Nguyen Dinh Thang; Yu Kaneko; Mayuko Y. Kumasaka; Osamu Yamanoshita; Noriyuki Uemura; Masahide Takahashi; Nobutaka Ohgami; Yoshiyuki Kawamoto
We examined the biochemical effects of arsenic on the activities of RET proto‐oncogene (c‐RET protein tyrosine kinases) and RET oncogene (RET‐MEN2A and RET‐PTC1 protein tyrosine kinases) products. Arsenic activated c‐RET kinase with promotion of disulfide bond‐mediated dimerization of c‐RET protein. Arsenic further activated RET‐MEN2A kinase, which was already 3‐ to 10‐fold augmented by genetic mutation compared with c‐RET kinase activity, with promotion of disulfide bond‐mediated dimerization of RET‐MEN2A protein (superactivation). Arsenic also increased extracellular domain‐deleted RET‐PTC1 kinase activity with promotion of disulfide bond‐mediated dimerization of RET‐PTC1 protein. Arsenic increased RET‐PTC1 kinase activity with cysteine 365 (C365) replaced by alanine with promotion of dimer formation but not with cysteine 376 (C376) replaced by alanine. Our results suggest that arsenic‐mediated regulation of RET kinase activity is dependent on conformational change of RET protein through modulation of a special cysteine sited at the intracellular domain in RET protein (relevant cysteine of C376 in RET‐PTC1 protein). Moreover, arsenic enhanced the activity of immunoprecipitated RET protein with increase in thiol‐dependent dimer formation. As arsenic (14.2 µM) was detected in the cells cultured with arsenic (100 µM), direct association between arsenic and RET in the cells might modulate dimer formation. Thus, we demonstrated a novel redox‐linked mechanism of activation of arsenic‐mediated RET proto‐oncogene and oncogene products. J. Cell. Biochem. 110: 399–407, 2010.