Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oumar Faye is active.

Publication


Featured researches published by Oumar Faye.


The New England Journal of Medicine | 2015

Clinical presentation of patients with Ebola virus disease in Conakry, Guinea.

Elhadj Ibrahima Bah; Marie-Claire Lamah; Tom Fletcher; Shevin T. Jacob; David M. Brett-Major; Nahoko Shindo; William A. Fischer; Francois Lamontagne; Sow Mamadou Saliou; Daniel G. Bausch; Barry Moumié; Tim Jagatic; Armand Sprecher; James V. Lawler; Thierry Mayet; Frederique A. Jacquerioz; María F. Méndez Baggi; Constanza Vallenas; Christophe Clement; Simon Mardel; Ousmane Faye; Oumar Faye; N'Faly Magassouba; Lamine Koivogui; Ruxandra Pinto; Robert Fowler; Abstr Act

BACKGROUND In March 2014, the World Health Organization was notified of an outbreak of Zaire ebolavirus in a remote area of Guinea. The outbreak then spread to the capital, Conakry, and to neighboring countries and has subsequently become the largest epidemic of Ebola virus disease (EVD) to date. METHODS From March 25 to April 26, 2014, we performed a study of all patients with laboratory-confirmed EVD in Conakry. Mortality was the primary outcome. Secondary outcomes included patient characteristics, complications, treatments, and comparisons between survivors and nonsurvivors. RESULTS Of 80 patients who presented with symptoms, 37 had laboratory-confirmed EVD. Among confirmed cases, the median age was 38 years (interquartile range, 28 to 46), 24 patients (65%) were men, and 14 (38%) were health care workers; among the health care workers, nosocomial transmission was implicated in 12 patients (32%). Patients with confirmed EVD presented to the hospital a median of 5 days (interquartile range, 3 to 7) after the onset of symptoms, most commonly with fever (in 84% of the patients; mean temperature, 38.6°C), fatigue (in 65%), diarrhea (in 62%), and tachycardia (mean heart rate, >93 beats per minute). Of these patients, 28 (76%) were treated with intravenous fluids and 37 (100%) with antibiotics. Sixteen patients (43%) died, with a median time from symptom onset to death of 8 days (interquartile range, 7 to 11). Patients who were 40 years of age or older, as compared with those under the age of 40 years, had a relative risk of death of 3.49 (95% confidence interval, 1.42 to 8.59; P=0.007). CONCLUSIONS Patients with EVD presented with evidence of dehydration associated with vomiting and severe diarrhea. Despite attempts at volume repletion, antimicrobial therapy, and limited laboratory services, the rate of death was 43%.


PLOS ONE | 2014

Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011

Diawo Diallo; Amadou A. Sall; Cheikh T. Diagne; Oumar Faye; Ousmane Faye; Yamar Ba; Kathryn A. Hanley; Michaela Buenemann; Scott C. Weaver; Mawlouth Diallo

Background Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal. Methodology/Findings Mosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18∶00 to 21∶00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground), savannah, agriculture, village (indoor and outdoor) and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes) tested: Ae. furcifer (5), Ae. luteocephalus (5), Ae. africanus (5), Ae. vittatus (3), Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each) and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each) collected in June (3), September (10), October (11), November (6) and December (1). ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated. Conclusions/Significance This ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.


Journal of Clinical Virology | 2008

One-step RT-PCR for detection of Zika virus

Oumar Faye; Ousmane Faye; Anne Dupressoir; Manfred Weidmann; Mady Ndiaye; Amadou A. Sall

BACKGROUND Zika virus (ZIKV) is an emerging mosquito-borne flavivirus circulating in Asia and Africa. Human infection induces an influenza-like syndrome that is associated with retro-orbital pain, oedema, lymphadenopathy, or diarrhea. Diagnosis of Zika fever requires virus isolation and serology, which are time consuming or cross-reactive. OBJECTIVE To develop a one-step RT-PCR assay to detect ZIKV in human serum. STUDY DESIGN An assay targeting the envelope protein coding region was designed and evaluated for its specificity, detection limit, repeatability, and capacity to detect ZIKV isolates collected over a 40-year period from various African countries and hosts. RESULTS The assays detection limit and repeatability were respectively 7.7pfu/reaction and 100% in serum and L-15 medium; none of 19 other flaviviruses tested were detected. CONCLUSIONS The assay is rapid, sensitive, and specific to detect ZIKV in cell culture or serum, but needs to be validated for diagnosis using clinical samples.


Lancet Infectious Diseases | 2015

Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study

Ousmane Faye; Pierre-Yves Boëlle; Emmanuel Heleze; Oumar Faye; Cheikh Loucoubar; N'Faly Magassouba; Barré Soropogui; Sakoba Keita; Tata Gakou; El Hadji Ibrahima Bah; Lamine Koivogui; Amadou A. Sall; Simon Cauchemez

BACKGROUND An epidemic of Ebola virus disease of unprecedented size continues in parts of west Africa. For the first time, large urban centres such as Conakry, the capital of Guinea, are affected. We did an observational study of patients with Ebola virus disease in three regions of Guinea, including Conakry, aiming to map the routes of transmission and assess the effect of interventions. METHODS Between Feb 10, 2014, and Aug 25, 2014, we obtained data from the linelist of all confirmed and probable cases in Guinea (as of Sept 16, 2014), a laboratory database of information about patients, and interviews with patients and their families and neighbours. With this information, we mapped chains of transmission, identified which setting infections most probably originated from (community, hospitals, or funerals), and computed the context-specific and overall reproduction numbers. FINDINGS Of 193 confirmed and probable cases of Ebola virus disease reported in Conakry, Boffa, and Télimélé, 152 (79%) were positioned in chains of transmission. Health-care workers contributed little to transmission. In March, 2014, individuals with Ebola virus disease who were not health-care workers infected a mean of 2·3 people (95% CI 1·6-3·2): 1·4 (0·9-2·2) in the community, 0·4 (0·1-0·9) in hospitals, and 0·5 (0·2-1·0) at funerals. After the implementation of infection control in April, the reproduction number in hospitals and at funerals reduced to lower than 0·1. In the community, the reproduction number dropped by 50% for patients that were admitted to hospital, but remained unchanged for those that were not. In March, hospital transmissions constituted 35% (seven of 20) of all transmissions and funeral transmissions constituted 15% (three); but from April to the end of the study period, they constituted only 9% (11 of 128) and 4% (five), respectively. 82% (119 of 145) of transmission occurred in the community and 72% (105) between family members. Our simulations show that a 10% increase in hospital admissions could have reduced the length of chains by 26% (95% CI 4-45). INTERPRETATION In Conakry, interventions had the potential to stop the epidemic, but reintroductions of the disease and poor cooperation of a few families led to prolonged low-level spread, showing the challenges of Ebola virus disease control in large urban centres. Monitoring of chains of transmission is crucial to assess and optimise local control strategies for Ebola virus disease. FUNDING Labex IBEID, Reacting, PREDEMICS, NIGMS MIDAS initiative, Institut Pasteur de Dakar.


Malaria Journal | 2007

Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal

Babacar Faye; Jean-Louis Ndiaye; Daouda Ndiaye; Yémou Dieng; Oumar Faye; Oumar Gaye

BackgroundIn view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to Plasmodium falciparum. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam®), artesunate plus mefloquine (Artequin®), artemether plus lumefantrine (Coartem®; four doses and six doses), and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal.MethodsThis is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol.ResultsAll drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%). Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%.The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed.ConclusionThe four combinations are effective and well-tolerated.


Nature | 2015

Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic

Etienne Simon-Loriere; Ousmane Faye; Oumar Faye; Lamine Koivogui; N'Faly Magassouba; Sakoba Keita; Jean-Michel Thiberge; Laure Diancourt; Christiane Bouchier; Matthias Vandenbogaert; Valérie Caro; Gamou Fall; Jan P. Buchmann; Christan B. Matranga; Pardis C. Sabeti; Jean-Claude Manuguerra; Edward C. Holmes; Amadou A. Sall

An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.


PLOS ONE | 2009

Randomized trial of piperaquine with sulfadoxine-pyrimethamine or dihydroartemisinin for malaria intermittent preventive treatment in children.

Badara Cisse; Matthew Cairns; Ernest Faye; Ousmane Ndiaye; Babacar Faye; Cécile Cames; Yue Cheng; Maguette NDiaye; Aminata Collé Lô; Kirsten Simondon; Jean-François Trape; Oumar Faye; Jean Louis Ndiaye; Oumar Gaye; Brian Greenwood; Paul Milligan

Background The long terminal half life of piperaquine makes it suitable for intermittent preventive treatment for malaria but no studies of its use for prevention have been done in Africa. We did a cluster randomized trial to determine whether piperaquine in combination with either dihydroartemisin (DHA) or sulfadoxine-pyrimethamine (SP) is as effective, and better tolerated, than SP plus amodiaquine (AQ), when used for intermittent preventive treatment in children delivered by community health workers in a rural area of Senegal. Methods Treatments were delivered to children 3–59 months of age in their homes once per month during the transmission season by community health workers. 33 health workers, each covering about 60 children, were randomized to deliver either SP+AQ, DHA+PQ or SP+PQ. Primary endpoints were the incidence of attacks of clinical malaria, and the incidence of adverse events. Results 1893 children were enrolled. Coverage of monthly rounds and compliance with daily doses was similar in all groups; 90% of children received at least 2 monthly doses. Piperaquine combinations were better tolerated than SP+AQ with a significantly lower risk of common, mild adverse events. 103 episodes of clinical malaria were recorded during the course of the trial. 68 children had malaria with parasitaemia >3000/µL, 29/671 (4.3%) in the SP+AQ group, compared with 22/604 (3.6%) in the DHA+PQ group (risk difference 0.47%, 95%CI −2.3%,+3.3%), and 17/618 (2.8%) in the SP+PQ group (risk difference 1.2%, 95%CI −1.3%,+3.6%). Prevalences of parasitaemia and the proportion of children carrying Pfdhfr and Pfdhps mutations associated with resistance to SP were very low in all groups at the end of the transmission season. Conclusions Seasonal IPT with SP+PQ in children is highly effective and well tolerated; the combination of two long-acting drugs is likely to impede the emergence of resistant parasites. Trial Registration ClinicalTrials.gov NCT00529620


PLOS Neglected Tropical Diseases | 2012

Landscape Ecology of Sylvatic Chikungunya Virus and Mosquito Vectors in Southeastern Senegal

Diawo Diallo; Amadou A. Sall; Michaela Buenemann; Rubing Chen; Oumar Faye; Cheikh T. Diagne; Ousmane Faye; Yamar Ba; Ibrahima Dia; Douglas M. Watts; Scott C. Weaver; Kathryn A. Hanley; Mawlouth Diallo

The risk of human infection with sylvatic chikungunya (CHIKV) virus was assessed in a focus of sylvatic arbovirus circulation in Senegal by investigating distribution and abundance of anthropophilic Aedes mosquitoes, as well as the abundance and distribution of CHIKV in these mosquitoes. A 1650 km2 area was classified into five land cover classes: forest, barren, savanna, agriculture and village. A total of 39,799 mosquitoes was sampled from all classes using human landing collections between June 2009 and January 2010. Mosquito diversity was extremely high, and overall vector abundance peaked at the start of the rainy season. CHIKV was detected in 42 mosquito pools. Our data suggest that Aedes furcifer, which occurred abundantly in all land cover classes and landed frequently on humans in villages outside of houses, is probably the major bridge vector responsible for the spillover of sylvatic CHIKV to humans.


PLOS Neglected Tropical Diseases | 2014

Rapid molecular assays for the detection of yellow Fever virus in low-resource settings

Camille Escadafal; Oumar Faye; Amadou A. Sall; Ousmane Faye; Manfred Weidmann; Oliver Strohmeier; Felix von Stetten; Josef Drexler; Michael Eberhard; Matthias Niedrig; Pranav Patel

Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.


PLOS ONE | 2015

Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

Ahmed Abd El Wahed; Pranav Patel; Oumar Faye; Sasikanya Thaloengsok; Doris Heidenreich; Ponpan Matangkasombut; Khajohnpong Manopwisedjaroen; Anavaj Sakuntabhai; Amadou A. Sall; Frank T. Hufert; Manfred Weidmann

Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

Collaboration


Dive into the Oumar Faye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge