Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ousmane Faye is active.

Publication


Featured researches published by Ousmane Faye.


The New England Journal of Medicine | 2015

Clinical presentation of patients with Ebola virus disease in Conakry, Guinea.

Elhadj Ibrahima Bah; Marie-Claire Lamah; Tom Fletcher; Shevin T. Jacob; David M. Brett-Major; Nahoko Shindo; William A. Fischer; Francois Lamontagne; Sow Mamadou Saliou; Daniel G. Bausch; Barry Moumié; Tim Jagatic; Armand Sprecher; James V. Lawler; Thierry Mayet; Frederique A. Jacquerioz; María F. Méndez Baggi; Constanza Vallenas; Christophe Clement; Simon Mardel; Ousmane Faye; Oumar Faye; N'Faly Magassouba; Lamine Koivogui; Ruxandra Pinto; Robert Fowler; Abstr Act

BACKGROUND In March 2014, the World Health Organization was notified of an outbreak of Zaire ebolavirus in a remote area of Guinea. The outbreak then spread to the capital, Conakry, and to neighboring countries and has subsequently become the largest epidemic of Ebola virus disease (EVD) to date. METHODS From March 25 to April 26, 2014, we performed a study of all patients with laboratory-confirmed EVD in Conakry. Mortality was the primary outcome. Secondary outcomes included patient characteristics, complications, treatments, and comparisons between survivors and nonsurvivors. RESULTS Of 80 patients who presented with symptoms, 37 had laboratory-confirmed EVD. Among confirmed cases, the median age was 38 years (interquartile range, 28 to 46), 24 patients (65%) were men, and 14 (38%) were health care workers; among the health care workers, nosocomial transmission was implicated in 12 patients (32%). Patients with confirmed EVD presented to the hospital a median of 5 days (interquartile range, 3 to 7) after the onset of symptoms, most commonly with fever (in 84% of the patients; mean temperature, 38.6°C), fatigue (in 65%), diarrhea (in 62%), and tachycardia (mean heart rate, >93 beats per minute). Of these patients, 28 (76%) were treated with intravenous fluids and 37 (100%) with antibiotics. Sixteen patients (43%) died, with a median time from symptom onset to death of 8 days (interquartile range, 7 to 11). Patients who were 40 years of age or older, as compared with those under the age of 40 years, had a relative risk of death of 3.49 (95% confidence interval, 1.42 to 8.59; P=0.007). CONCLUSIONS Patients with EVD presented with evidence of dehydration associated with vomiting and severe diarrhea. Despite attempts at volume repletion, antimicrobial therapy, and limited laboratory services, the rate of death was 43%.


PLOS ONE | 2014

Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011

Diawo Diallo; Amadou A. Sall; Cheikh T. Diagne; Oumar Faye; Ousmane Faye; Yamar Ba; Kathryn A. Hanley; Michaela Buenemann; Scott C. Weaver; Mawlouth Diallo

Background Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal. Methodology/Findings Mosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18∶00 to 21∶00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground), savannah, agriculture, village (indoor and outdoor) and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes) tested: Ae. furcifer (5), Ae. luteocephalus (5), Ae. africanus (5), Ae. vittatus (3), Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each) and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each) collected in June (3), September (10), October (11), November (6) and December (1). ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated. Conclusions/Significance This ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.


Journal of Clinical Virology | 2008

One-step RT-PCR for detection of Zika virus

Oumar Faye; Ousmane Faye; Anne Dupressoir; Manfred Weidmann; Mady Ndiaye; Amadou A. Sall

BACKGROUND Zika virus (ZIKV) is an emerging mosquito-borne flavivirus circulating in Asia and Africa. Human infection induces an influenza-like syndrome that is associated with retro-orbital pain, oedema, lymphadenopathy, or diarrhea. Diagnosis of Zika fever requires virus isolation and serology, which are time consuming or cross-reactive. OBJECTIVE To develop a one-step RT-PCR assay to detect ZIKV in human serum. STUDY DESIGN An assay targeting the envelope protein coding region was designed and evaluated for its specificity, detection limit, repeatability, and capacity to detect ZIKV isolates collected over a 40-year period from various African countries and hosts. RESULTS The assays detection limit and repeatability were respectively 7.7pfu/reaction and 100% in serum and L-15 medium; none of 19 other flaviviruses tested were detected. CONCLUSIONS The assay is rapid, sensitive, and specific to detect ZIKV in cell culture or serum, but needs to be validated for diagnosis using clinical samples.


Lancet Infectious Diseases | 2015

Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study

Ousmane Faye; Pierre-Yves Boëlle; Emmanuel Heleze; Oumar Faye; Cheikh Loucoubar; N'Faly Magassouba; Barré Soropogui; Sakoba Keita; Tata Gakou; El Hadji Ibrahima Bah; Lamine Koivogui; Amadou A. Sall; Simon Cauchemez

BACKGROUND An epidemic of Ebola virus disease of unprecedented size continues in parts of west Africa. For the first time, large urban centres such as Conakry, the capital of Guinea, are affected. We did an observational study of patients with Ebola virus disease in three regions of Guinea, including Conakry, aiming to map the routes of transmission and assess the effect of interventions. METHODS Between Feb 10, 2014, and Aug 25, 2014, we obtained data from the linelist of all confirmed and probable cases in Guinea (as of Sept 16, 2014), a laboratory database of information about patients, and interviews with patients and their families and neighbours. With this information, we mapped chains of transmission, identified which setting infections most probably originated from (community, hospitals, or funerals), and computed the context-specific and overall reproduction numbers. FINDINGS Of 193 confirmed and probable cases of Ebola virus disease reported in Conakry, Boffa, and Télimélé, 152 (79%) were positioned in chains of transmission. Health-care workers contributed little to transmission. In March, 2014, individuals with Ebola virus disease who were not health-care workers infected a mean of 2·3 people (95% CI 1·6-3·2): 1·4 (0·9-2·2) in the community, 0·4 (0·1-0·9) in hospitals, and 0·5 (0·2-1·0) at funerals. After the implementation of infection control in April, the reproduction number in hospitals and at funerals reduced to lower than 0·1. In the community, the reproduction number dropped by 50% for patients that were admitted to hospital, but remained unchanged for those that were not. In March, hospital transmissions constituted 35% (seven of 20) of all transmissions and funeral transmissions constituted 15% (three); but from April to the end of the study period, they constituted only 9% (11 of 128) and 4% (five), respectively. 82% (119 of 145) of transmission occurred in the community and 72% (105) between family members. Our simulations show that a 10% increase in hospital admissions could have reduced the length of chains by 26% (95% CI 4-45). INTERPRETATION In Conakry, interventions had the potential to stop the epidemic, but reintroductions of the disease and poor cooperation of a few families led to prolonged low-level spread, showing the challenges of Ebola virus disease control in large urban centres. Monitoring of chains of transmission is crucial to assess and optimise local control strategies for Ebola virus disease. FUNDING Labex IBEID, Reacting, PREDEMICS, NIGMS MIDAS initiative, Institut Pasteur de Dakar.


Emerging Infectious Diseases | 2004

Crimean-Congo Hemorrhagic Fever, Mauritania

Pierre Nabeth; Dah Ould Cheikh; Baidy Lo; Ousmane Faye; Idoumou Ould Mohamed Vall; Mbayame Ndiaye Niang; Bocar Wague; Djibril Diop; Mawlouth Diallo; Boubacar Diallo; Ousmane M. Diop; François Simon

A hospital outbreak of CCHF in Mauritania alerted authorities to sporadic cases occurring in the community; in all, 38 persons were infected.


Nature | 2015

Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic

Etienne Simon-Loriere; Ousmane Faye; Oumar Faye; Lamine Koivogui; N'Faly Magassouba; Sakoba Keita; Jean-Michel Thiberge; Laure Diancourt; Christiane Bouchier; Matthias Vandenbogaert; Valérie Caro; Gamou Fall; Jan P. Buchmann; Christan B. Matranga; Pardis C. Sabeti; Jean-Claude Manuguerra; Edward C. Holmes; Amadou A. Sall

An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.


Journal of Virology | 2007

Evolutionary Processes among Sylvatic Dengue Type 2 Viruses

Nikos Vasilakis; Edward C. Holmes; Eric B. Fokam; Ousmane Faye; Mawlouth Diallo; Amadou A. Sall; Scott C. Weaver

ABSTRACT Sylvatic dengue viruses (DENV) are transmitted in an enzootic cycle between nonhuman primates and arboreal Aedes mosquitoes in Southeast Asia and West Africa. Although previous analyses have revealed the evolutionary processes among endemic (human) DENV, little is known about viral evolution in the sylvatic cycle. Through an analysis of 14 complete coding regions of sylvatic Dengue type 2 virus sampled over a 33-year period, we show that both the rate of evolutionary change and the pattern of natural selection are similar among endemic and sylvatic DENV, although the latter have a uniquely high frequency of positive selection in the NS4B protein gene. Our findings support a recent cross-species transmission event and suggest the possibility of future DENV reemergence from the sylvatic cycle.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2008

Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa

Mawlouth Diallo; Yamar Ba; Ousmane Faye; Mouhamadou Lamine Soumare; Ibrahima Dia; Amadou A. Sall

Vector competence of Aedes aegypti populations from six locations in different bioclimatic zones and habitats of Senegal was assessed for sylvatic (ArD 140875) and epidemic (ArA 6894) dengue 2 virus (DENV-2) isolates. F1 generation mosquitoes were fed with a blood meal containing 10(6.5) and 1.6 x 10(7) tissue culture infectious dose (TCID50) of the sylvatic DENV-2 isolate or 10(6.5) TCID50 of the epidemic isolate and incubated for 14 days. After this period, legs and wings of each individual were pooled and the corresponding body was collected separately. An immunofluorescence assay was used to test bodies and wings/legs for DENV-2 infection separately. The results showed that: (i) Senegalese Ae. aegypti populations have lower vector competence (infection rate 0-26%, dissemination rate 10-100%) for sylvatic and epidemic dengue viruses than populations from Asia and America; (ii) there was no obvious geographic variation in susceptibility among mosquito populations; (iii) the only apparent factor affecting the susceptibility was the virus titre; and (iv) except for that of Kédougou, all populations were able to disseminate the virus. Overall our findings, while extended to four other populations, confirm previous studies showing low susceptibility of Senegalese Ae. aegypti populations.


Nature | 2017

Virus genomes reveal factors that spread and sustained the Ebola epidemic

Gytis Dudas; Luiz Max Carvalho; Trevor Bedford; Andrew J. Tatem; Guy Baele; Nuno Rodrigues Faria; Daniel J. Park; Jason T. Ladner; Armando Arias; Danny A. Asogun; Filip Bielejec; Sarah Caddy; Matthew Cotten; Jonathan D’ambrozio; Simon Dellicour; Antonino Di Caro; Joseph W. Diclaro; Sophie Duraffour; Michael J. Elmore; Lawrence S. Fakoli; Ousmane Faye; Merle L. Gilbert; Sahr M. Gevao; Stephen K. Gire; Adrianne Gladden-Young; Andreas Gnirke; Augustine Goba; Donald S. Grant; Bart L. Haagmans; Julian A. Hiscox

The 2013–2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


PLOS Neglected Tropical Diseases | 2012

Landscape Ecology of Sylvatic Chikungunya Virus and Mosquito Vectors in Southeastern Senegal

Diawo Diallo; Amadou A. Sall; Michaela Buenemann; Rubing Chen; Oumar Faye; Cheikh T. Diagne; Ousmane Faye; Yamar Ba; Ibrahima Dia; Douglas M. Watts; Scott C. Weaver; Kathryn A. Hanley; Mawlouth Diallo

The risk of human infection with sylvatic chikungunya (CHIKV) virus was assessed in a focus of sylvatic arbovirus circulation in Senegal by investigating distribution and abundance of anthropophilic Aedes mosquitoes, as well as the abundance and distribution of CHIKV in these mosquitoes. A 1650 km2 area was classified into five land cover classes: forest, barren, savanna, agriculture and village. A total of 39,799 mosquitoes was sampled from all classes using human landing collections between June 2009 and January 2010. Mosquito diversity was extremely high, and overall vector abundance peaked at the start of the rainy season. CHIKV was detected in 42 mosquito pools. Our data suggest that Aedes furcifer, which occurred abundantly in all land cover classes and landed frequently on humans in villages outside of houses, is probably the major bridge vector responsible for the spillover of sylvatic CHIKV to humans.

Collaboration


Dive into the Ousmane Faye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oumar Gaye

Cheikh Anta Diop University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lassana Konate

Cheikh Anta Diop University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge