P. J. Klasse
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. J. Klasse.
Journal of Immunology | 2006
Bing He; Xugang Qiao; P. J. Klasse; April Chiu; Amy Chadburn; Daniel M. Knowles; John P. Moore; Andrea Cerutti
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4+ T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4+ T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4+ T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.
Proceedings of the National Academy of Sciences of the United States of America | 2009
W.S Horne; Lisa M. Johnson; Tom Ketas; P. J. Klasse; Min Lu; John P. Moore; Samuel H. Gellman
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining α- and β-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that α/β-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic α/β-peptides effectively block HIV-cell fusion via a mechanism comparable to that of gp41-derived α-peptides. An optimized α/β-peptide is far less susceptible to proteolytic degradation than is an analogous α-peptide. Our findings show how a two-stage design approach, in which sequence-based α→β replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.
The Journal of Infectious Diseases | 2010
Ronald S. Veazey; Thomas J. Ketas; Jason Dufour; Terri Moroney-Rasmussen; Linda C. Green; P. J. Klasse; John P. Moore
An effective vaginal microbicide could reduce human immunodeficiency virus type 1 (HIV-1) transmission to women. Among microbicide candidates in clinical development is Maraviroc (MVC), a small-molecule drug that binds the CCR5 co-receptor and impedes HIV-1 entry into cells. Delivered systemically, MVC reduces viral load in HIV-1-infected individuals, but its ability to prevent transmission is untested. We have now evaluated MVC as a vaginal microbicide with use of a stringent model that involves challenge of rhesus macaques with a high-dose of a CCR5-using virus, SHIV-162P3. Gel-formulated, prescription-grade MVC provided dose-dependent protection, half-maximally at 0.5 mM (0.25 mg/mL). The duration of protection was transient; the longer the delay between MVC application and virus challenge, the less protection (half life of approximately 4 h). As expected, MVC neither protected against challenge with a CXCR4-using virus, SHIV-KU1, nor exacerbated postinfection viremia. These findings validate MVC development as a vaginal microbicide for women and should guide clinical programs.
Cell | 2015
Steven W. de Taeye; Gabriel Ozorowski; Alba Torrents de la Peña; Jean-Philippe Julien; Tom L. G. M. van den Kerkhof; Judith A. Burger; Laura K. Pritchard; Pavel Pugach; Anila Yasmeen; Jordan Crampton; Joyce K. Hu; Ilja Bontjer; Jonathan L. Torres; Heather Arendt; Joanne DeStefano; Wayne C. Koff; Hanneke Schuitemaker; Dirk Eggink; Ben Berkhout; Hansi J. Dean; Celia C. LaBranche; Shane Crotty; Max Crispin; David C. Montefiori; P. J. Klasse; Kelly K. Lee; John P. Moore; Ian A. Wilson; Andrew B. Ward; Rogier W. Sanders
The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.
Cell Reports | 2016
Anna Janina Behrens; Snezana Vasiljevic; Laura K. Pritchard; David J. Harvey; Rajinder S. Andev; Stefanie A. Krumm; Weston B. Struwe; Albert Cupo; Abhinav Kumar; Nicole Zitzmann; Gemma E. Seabright; Holger B. Kramer; Daniel Spencer; Louise Royle; Jeong Hyun Lee; P. J. Klasse; Dennis R. Burton; Ian A. Wilson; Andrew B. Ward; Rogier W. Sanders; John P. Moore; Katie J. Doores; Max Crispin
Summary The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.
Journal of Virology | 2003
Josefina D. Piñón; P. J. Klasse; Sushma R. Jassal; Sandy Welson; Jonathan Weber; David W. Brighty; Quentin J. Sattentau
ABSTRACT The major receptors required for attachment and entry of the human T-cell leukemia virus type 1 (HTLV-1) remain to be identified. Here we demonstrate that a functional, soluble form of the HTLV-1 surface envelope glycoprotein, gp46, fused to an immunoglobulin Fc region (gp46-Fc) binds to heparan sulfate proteoglycans (HSPGs) on mammalian cells. Substantial binding of gp46-Fc to HeLa and Chinese hamster ovary (CHO) K1 cells that express HSPGs was detected, whereas binding to the sister CHO lines 2244, which expresses no HSPGs, and 2241, which expresses no glycosaminoglycans (GAGs), was much reduced. Enzymatic removal of HSPGs from HeLa and CHO K1 cells also reduced gp46-Fc binding. Dextran sulfate inhibited gp46-Fc binding to HSPG-expressing cells in a dose-dependent manner, whereas chondroitin sulfate was less effective. By contrast, dextran sulfate inhibited gp46-Fc binding to GAG-negative cells such as CHO 2244, CHO 2241, and Jurkat T cells weakly or not at all. Dextran sulfate inhibited HTLV-1 envelope glycoprotein (Env)-pseudotyped virus infection of permissive, HSPG-expressing target cells and blocked syncytium formation between HTLV-1 Env-expressing cells and HSPG-expressing permissive target cells. Finally, HSPG-expressing cells were more permissive for HTLV-1 Env-pseudotyped virus infection than HSPG-negative cells. Thus, similar to other pathogenic viruses, HTLV-1 may have evolved to use HSPGs as cellular attachment receptors to facilitate its propagation.
AIDS Research and Human Retroviruses | 2010
Kaustuv Banerjee; P. J. Klasse; Rogier W. Sanders; Florencia Pereyra; Elizabeth Michael; Min Lu; Bruce D. Walker; John P. Moore
We have studied IgG subclass responses to the HIV-1 proteins gp120, gp41, p24, and Tat in individuals who control their infection without using antiretroviral drugs (HIV-1 controllers; HC) or who progress to disease (chronic progressors; CP). We also measured IgG subclass titers to gp120 in vaccinated individuals. In all cases, the IgG1 subclass dominated the overall response to each antigen. The only IgG titer that differed significantly between the HC and CP groups was to the p24 Gag protein, which was higher in the HC group. IgG1 titers to both p24 and gp120 were significantly higher in the HC group, and IgG3 anti-gp120 antibodies, although rare, were detected more frequently in that group than in CP. Overall, significantly more patients had IgG2 antibodies to gp120 than to gp41. Antibodies to other IgG subclasses were infrequent and their frequency or titers did not differ between the two patient groups. Anti-gp41 and anti-Tat responses also did not correlate with immune control, and anti-Tat antibodies were infrequently detected. Although we found isotypic differences in IgG responses to HIV-1 antigens among vaccinees and the HC and CP individuals, there were no indications of differential T(H)1:T(H)2 polarization between the different groups.
PLOS Pathogens | 2009
Reem Berro; Rogier W. Sanders; Min Lu; P. J. Klasse; John P. Moore
HIV-1 variants resistant to small molecule CCR5 inhibitors recognize the inhibitor-CCR5 complex, while also interacting with free CCR5. The most common genetic route to resistance involves sequence changes in the gp120 V3 region, a pathway followed when the primary isolate CC1/85 was cultured with the AD101 inhibitor in vitro, creating the CC101.19 resistant variant. However, the D1/86.16 escape mutant contains no V3 changes but has three substitutions in the gp41 fusion peptide. By using CCR5 point-mutants and gp120-targeting agents, we have investigated how infectious clonal viruses derived from the parental and both resistant isolates interact with CCR5. We conclude that the V3 sequence changes in CC101.19 cl.7 create a virus with an increased dependency on interactions with the CCR5 N-terminus. Elements of the CCR5 binding site associated with the V3 region and the CD4-induced (CD4i) epitope cluster in the gp120 bridging sheet are more exposed on the native Env complex of CC101.19 cl.7, which is sensitive to neutralization via these epitopes. However, D1/86.16 cl.23 does not have an increased dependency on the CCR5 N-terminus, and its CCR5 binding site has not become more exposed. How this virus interacts with the inhibitor-CCR5 complex remains to be understood.
Virology | 1991
Jackie Cordell; John P. Moore; Christopher J. Dean; P. J. Klasse; Robin A. Weiss; Jane A. McKeating
Monoclonal antibodies (MAbs) to a recombinant form of the envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1 IIIB) were raised in rats and screened for their ability to block recombinant gp120 binding to recombinant, soluble CD4 (sCD4) in vitro. Four such MAbs were identified and characterised. Each MAb bound strongly to gp120 from eight widely divergent HIV-1 strains from the United States and Africa. Two MAbs were mapped to the fourth conserved (C4) region of gp120, whereas the other two recognised an as yet undefined, conformationally sensitive epitope. MAbs to the latter epitope were the more potent in blocking the gp120-sCD4 interaction. None of the MAbs, however, had potent neutralising activity.
Journal of Virology | 2015
Rajesh P. Ringe; Anila Yasmeen; Gabriel Ozorowski; Eden P. Go; Laura K. Pritchard; Thomas A. Ketas; Christopher A. Cottrell; Ian A. Wilson; Rogier W. Sanders; Albert Cupo; Max Crispin; Kelly K. Lee; Heather Desaire; Andrew B. Ward; P. J. Klasse; John P. Moore
ABSTRACT We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140UNC-Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41ECTO) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140UNC-Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components. IMPORTANCE Soluble, recombinant multimeric proteins based on the HIV-1 env gene are current candidate immunogens for vaccine trials in humans. These proteins are generally designed to mimic the native trimeric envelope glycoprotein (Env) that is the target of virus-neutralizing antibodies on the surfaces of virions. The underlying hypothesis is that an Env-mimetic protein may be able to induce antibodies that can neutralize the virus broadly and potently enough for a vaccine to be protective. Multiple different designs for Env-mimetic trimers have been put forth. Here, we used the CZA97.012 and 92UG037.8 env genes to compare some of these designs and determine which ones best mimic virus-associated Env trimers. We conclude that the most widely used versions of CZA97.012 and 92UG037.8 oligomeric Env proteins do not resemble the trimeric Env glycoprotein on HIV-1 viruses, which has implications for the design and interpretation of ongoing or proposed clinical trials of these proteins.